K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

1. \(lim_{n\rightarrow+\infty}\dfrac{n^2+1}{n}=lim_{n\rightarrow+\infty}\left(n+\dfrac{1}{n}\right)=+\infty\)(đpcm)

2. \(lim_{n\rightarrow+\infty}\dfrac{2-n}{\sqrt{n}}=lim_{n\rightarrow+\infty}\left(2-\sqrt{n}\right)=-\infty\) (đpcm)

10 tháng 2 2022

cảm ơn

( bài này học từ 1 năm trc )

15 tháng 10 2023

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

4 tháng 4 2017

a) = = -4.

b) = = (2-x) = 4.

c) =
= = = .

d) = = -2.

e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.

f) = = -∞, vì > 0 với ∀x>0.


NV
6 tháng 1 2019

a/

\(lim\dfrac{\sqrt{n^2-n}-n}{n}=lim\dfrac{-n}{n\left(\sqrt{n^2-n}+n\right)}=lim\dfrac{-\dfrac{1}{n}}{1\left(\sqrt{1-\dfrac{1}{n}}+1\right)}=\dfrac{0}{2}=0\)

b/

\(lim\dfrac{2^n-5^{n+2}}{5^n-4^{2-n}}=lim\dfrac{8^n-25.20^n}{20^n-4^2}=lim\dfrac{\left(\dfrac{8}{20}\right)^n-25}{1-\dfrac{16}{20^n}}=\dfrac{0-25}{1-0}=-25\)