K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

\(sinx\left(1+cos2x\right)=sinx\left(1+2cos^2x-1\right)=2sinx.cosx.cosx=sin2x.cosx\)

\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=\frac{-cos2x}{\frac{1}{2}sin2x}=-\frac{2}{tan2x}\)

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}\left(\frac{1+cosx}{cosx}\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}.\frac{2cos^2\frac{x}{2}}{cosx}=\frac{2sin\frac{x}{2}.cos\frac{x}{2}}{cosx}=\frac{sinx}{cosx}=tanx\)

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

5 tháng 11 2019

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

NV
6 tháng 11 2019

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

NV
10 tháng 4 2019

3/

\(\frac{sin2x-sinx}{1-cosx+cos2x}=\frac{2sinxcosx-sinx}{1-cosx+2cos^2x-1}=\frac{sinx\left(2cosx-1\right)}{cosx\left(2cosx-1\right)}=\frac{sinx}{cosx}=tanx\)

4/

\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\left(\frac{sinx+\frac{1}{tanx}}{1+sinxtanx}\right)^{2014}=\left(\frac{sinxtanx+1}{tanx\left(sinxtanx+1\right)}\right)^{2014}\)

\(=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)

\(\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}=\frac{sin^{2014}x+\frac{1}{tan^{2014}x}}{1+\left(sinx.tanx\right)^{2014}}=\frac{\left(sinxtanx\right)^{2014}+1}{tan^{2014}x\left[\left(sinxtanx\right)^{2014}+1\right]}\)

\(=\frac{1}{tan^{2014}x}=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)

\(\Rightarrow\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}\)

NV
11 tháng 4 2019

\(\frac{sin^2a+1}{2.cos^2a}+\frac{1+cos^2a}{2.sin^2a}+1=\frac{tan^2a}{2}+\frac{1}{2cos^2a}+\frac{cot^2a}{2}+\frac{1}{2sin^2a}+1\)

\(=\frac{1}{2}\left(tan^2a+1+tan^2a+cot^2a+1+cot^2a+2\right)\)

\(=\frac{1}{2}\left(2tan^2a+4+2cot^2a\right)=tan^2a+2+cot^2a=\left(tana+cota\right)^2\)

B.

\(\frac{1-4sin^2a.cos^2a}{4sin^2a.cos^2a}=\frac{\frac{1}{cos^4a}-\frac{4sin^2a}{cos^2a}}{\frac{4sin^2a}{cos^2a}}=\frac{\left(\frac{1}{cos^2a}\right)^2-4tan^2a}{4tan^2a}=\frac{\left(1+tan^2a\right)^2-4tan^2a}{4tan^2a}\)

\(=\frac{tan^4a-2tan^2a+1}{4tan^2a}\)

C.

\(\frac{sina+tana}{tana}=\frac{sina}{tana}+1=1+sina.\frac{cosa}{sina}=1+cosa\)

D.

\(tana+\frac{cosa}{1+sina}=\frac{sina}{cosa}+\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{sina.cosa}{cos^2a}+\frac{cosa-cosa.sina}{cos^2a}\)

\(=\frac{sina.cosa+cosa-sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)

Câu C sai

NV
10 tháng 6 2020

\(\frac{1-2sin^2x}{1-tanx}=\frac{cosx\left(1-2sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cos^2x-sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cosx+sinx\right)\left(cosx-sinx\right)}{cosx-sinx}\)

\(=cosx\left(cosx+sinx\right)=\frac{cosx\left(cosx+sinx\right)^2}{cosx+sinx}=\frac{cos^2x+sin^2x+2sinx.cosx}{1+\frac{sinx}{cosx}}=\frac{1+sin2x}{1+tanx}\)

\(\frac{x}{2}=a\Rightarrow\frac{cot^2a-cot^23a}{cos^2a.cos2a\left(1+cot^23a\right)}=\frac{sin^23a\left(cot^2a-cot^23a\right)}{cos^2a.cos2a}=\frac{sin^23a.cot^2a-cos^23a}{cos^2a.cos2a}\)

\(=\frac{sin^23a.cos^2a-cos^23a.sin^2a}{sin^2a.cos^2a.cos2a}=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{sin^2a.cos^2a.cos2a}\)

\(=\frac{sin\left(3a-a\right).sin\left(3a+a\right)}{sin^2a.cos^2a.cos2a}=\frac{sin2a.sin4a}{sin^2a.cos^2a.cos2a}=\frac{2sina.cosa.4sina.cosa.cos2a}{sin^2a.cos^2a.cos2a}\)

\(=\frac{8sin^2a.cos^2a.cos2a}{sin^2a.cos^2a.cos2a}=8\)

\(sin\left(a+b+a\right)=5sin\left(a+b-a\right)\)

\(\Leftrightarrow sin\left(a+b\right)cosa+cos\left(a+b\right).sina=5sin\left(a+b\right).cosa-5cos\left(a+b\right).sina\)

\(\Leftrightarrow6cos\left(a+b\right).sina=4sin\left(a+b\right).cosa\)

\(\Leftrightarrow\frac{2sin\left(a+b\right)cosa}{cos\left(a+b\right)sina}=3\Leftrightarrow\frac{2tan\left(a+b\right)}{tana}=3\)

NV
29 tháng 5 2020

\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)

\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)

\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)

NV
11 tháng 4 2019

\(A=\frac{sin^2x+cos^2x+2sinx.cosx-1}{\frac{cosx}{sinx}-sinx.cosx}=\frac{2sinx^2x.cosx}{cosx-sin^2x.cosx}=\frac{2sin^2x.cosx}{cosx\left(1-sin^2x\right)}\)

\(=\frac{2sin^2x}{1-sin^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)

\(N=\left(\frac{sinx+\frac{sinx}{cosx}}{cosx+1}\right)^2+1=\left(\frac{sinx.cosx+sinx}{cosx\left(cosx+1\right)}\right)^2+1\)

\(=\left(\frac{sinx\left(cosx+1\right)}{cosx\left(cosx+1\right)}\right)^2+1=tan^2x+1=\frac{1}{cos^2x}\)