Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
a) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{64}-1\right)\)
\(=\dfrac{3^{64}-1}{2}\)
b) \(\left(a+b+c\right)2+\left(a-b-c\right)2+\left(b-c-a\right)2+\left(c-a-b\right)2\)
\(=2\left[\left(a+b+c\right)+\left(a-b-c\right)+\left(b-c-a\right)+\left(c-a-b\right)\right]\)
\(=2\left(a+b+c+a-b-c+b-c-a+c-a-b\right)\)
\(=2.0\)
\(=0\)
c)\(\left(a+b+c+d\right)2+\left(a+b-c-d\right)2+\left(a+c-b-d\right)2+\left(a+d-b-c\right)2\)
\(=2\left(a+b+c+d+a+b-c-d+a+c-b-d+a+d-b-c\right)\)
\(=2.4a\)
\(=8a\)
1, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)
Từ (1), (2) và (3) suy ra:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\) \(\xrightarrow[]{}\) đpcm
5. a, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)
Từ (1),(2) và (3) suy ra:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
mà x+y+z=3
=>\(x^2+y^2+z^2+3\ge2.3=6\)
<=> \(x^2+y^2+z^2\ge6-3=3\)
<=> \(A\ge3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy GTNN của A=x2+y2+z2 là 3 khi x=y=z=1
b, Ta có: x+y+z=3
=> \(\left(x+y+z\right)^2=9\)
<=> \(x^2+y^2+z^2+2xy+2yz+2xz=9\)
<=> \(x^2+y^2+z^2=9-2xy-2yz-2xz\)
mà \(x^2+y^2+z^2\ge3\) (theo a)
=> \(9-2xy-2yz-2xz\ge3\)
<=> \(-2\left(xy+yz+xz\right)\ge3-9=-6\)
<=> \(xy+yz+xz\le\dfrac{-6}{-2}=3\)
<=> \(B\le3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy GTLN của B=xy+yz+xz là 3 khi x=y=z=1
a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì
\(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.
d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c
e,Xét hiệu :
\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\) => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.
=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
tất cả các số bé kia là mũ nha các bạn(số 2,3 ấy)
1. biến đổi vế trái
= a2x2 + a2y2 + b2x2 + b2y2
= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy
= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)