K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

Bài làm:

a) Ta có: \(x^2+1< 1\)

\(\Leftrightarrow x^2< 0\)

Mà  \(x^2\ge0\left(\forall x\right)\)

=> vô lý

=> BPT vô nghiệm

b) \(x^2+2x< 2x\)

\(\Rightarrow x^2< 0\)

tương tự a BPT vô nghiệm

9 tháng 8 2020

a, \(x^2+1< 1\Leftrightarrow x^2< 0\)

Mà \(x^2\ge0\forall x\)=> đpcm 

b, \(x^2+2x< 2x\Leftrightarrow x^2< 0\)

Mà \(x^2\ge0\forall x\)=> đpcm

9 tháng 8 2020

Bài làm:

a) Ta có: \(x^2-2x+3< -2x+3\)

\(\Rightarrow x^2< 0\)

=> vô lý

=> vô nghiệm

b) \(x^2+2x+2\le0\)

\(\Leftrightarrow\left(x+1\right)^2+1\le0\)

\(\Rightarrow\left(x+1\right)^2\le-1\)

=> vô lý

=> vô nghiệm

9 tháng 8 2020

a, \(x^2-2x+3< -2x+3\Leftrightarrow x^2< 0\)

Mà \(x^2\ge0\forall x\)=> BFT vô nghiệm 

b, \(x^2+2x+2\le0\)

\(\Leftrightarrow x^2+2x+1\le1\)

\(\Leftrightarrow\left(x+1\right)^2\le1\)Mà \(\left(x+1\right)^2\ge0\)

=> BFT vô nghiệm 

25 tháng 1 2020

Ta có  \(x^2-2x+2=\left(x-1\right)^2+1>0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

17 tháng 6 2016

thay -2 vào các bất phương trình nếu thỏa mãn thì là nghiệm

đáp án : -2 là nghiệm cyar bpt: a,c,d

17 tháng 6 2016

a) (2-x)/4 < 5 ⇔ 2 – x < 20 ⇔ x > -18, tập nghiệm S = {x ∈ R/ x > -18}
b) 3 ≤ (2x + 3)/5 ⇔ 3.5 ≤ 2x + 3 ⇔ 2x ≥ 15 -3 ⇔ 2x ≥ 12

⇔ x ≥ 6
Tập nghiệm S = {x ∈ R/x ≥ 6}
c) ⇔ 5(2x-5) > 3(7 – x) ⇔ 20x – 25 > 21 – 3x ⇔ 23x > 46

⇔ x > 2
Tập nghiệm S = {x ∈ R/ x > 2}
d) \(\frac{2x+3}{-4}\ge\frac{4-x}{-3}\Leftrightarrow\frac{2x+3}{4}\le\frac{4-x}{3}\)

⇔ 3(2x + 3) ≤ 4(4-x)
⇔ 6x + 9 ≤ 16 – 4x ⇔ 10x ≤ 7 ⇔ x ≤ 7/10 . Tập nghiệm S = {x∈ R/ x ≤ 7/10}

12 tháng 8 2020

a) \(x^2+1\ge1\)

\(\Rightarrow x^2+1< 1\)( Vô lí )

=> BPT vô nghiệm 

b) \(x^2+2x< 2x\)

\(\Leftrightarrow x^2+2x-2x< 0\)

\(\Leftrightarrow x^2< 0\)( vô lí )

Vậy BPT vô nghiệm

c) \(x^2-2x+3< -2x+3\)

\(\Leftrightarrow x^2-2x+3+2x-3< 0\)

\(\Leftrightarrow x^2< 0\)

Vậy,,,,,,,,,,,,,,,,,,,

12 tháng 8 2020

a, \(x^2+1< 1\)(*)

Ta có : \(x^2\ge0< =>x^2+1\ge1\)

Nên không thể bé hơn 1 

Nên (*) vô lí 

b, \(x^2+2x< 2x\)(**)

Ta có : \(x^2\ge0< =>x^2+2x\ge2x\)

Nên không thể bé hơn 2x

Nên (**) vô lí 

c, \(x^2-2x+3< -2x+3\)

\(< =>x^2-2x+2x+3-x< 0\)

\(< =>x^2< 0\)( vô lí )

Bài 1: 

a: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\dfrac{3}{2}\right)\)

\(=2\left(x^2-2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x-1\right)^2+1>0\)(luôn đúng)

b: \(x^2-6x+10\)

\(=x^2-6x+9+1=\left(x-3\right)^2+1>=1\) với mọi x

c: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4>0\)

d: \(-x^2+10x-30\)

\(=-\left(x^2-10x+30\right)\)

\(=-\left(x^2-10x+25+5\right)\)

\(=-\left(x-5\right)^2-5\le-5< 0\)

27 tháng 4 2020

tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha