Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) 5x2 + y2 -4xy - 2y + 8x + 2013
= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013
= ( 2x - y +1)2 + x2 +2013
Vì ( 2x-y+1)2 \(\ge\)0 \(\forall x,y\); x2 \(\ge\)0\(\forall x\)
=> (2x - y+1)2 + x2 \(\ge\)0
=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0
hay A \(\ge0\)\(\forall x,y\)=> A ko âm
_______________Bài làm___________________
a, \(x^2+xy+y^2+1\)
\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)
Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)
Và \(\dfrac{3y^2}{4}\ge0\forall y\)
Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)
b, \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)
Và \(\left(y-3\right)^2\ge0\forall y\)
Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
c, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Do .........
tự làm ik
\(1,x^2-2x=24\\ x^2-2x+1=25\\ \left(x-1\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy...\)
2, AD hằng đẳng thức.
\(3,P=x^2-5x+2\\ =\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{17}{4}\\ =\left(x-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\)
Ta có : \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(x-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\forall x\\ \Leftrightarrow P\ge-\dfrac{17}{4}\\ \Rightarrow Min_P=-\dfrac{17}{4}\Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\)
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)
BĐT đúng
b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
BĐT đúng
c)Dấu "=" ko xảy ra???
\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)
\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)
a. −x2 + 6x - 10
= −(x2 − 6x) − 10
= −(x2 − 2.x.3 + 32 − 9) − 10
= −(x − 3)2 + 9 − 10
= −(x − 3)2 −1
Vì (x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1
Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x
Lời giải:
Ta có:
$5x^2+y^2-4xy-2y+8x+2013=(4x^2-4xy+y^2)+x^2-2y+8x+2013$
$=(2x-y)^2+2(2x-y)+x^2+12x+36+1977$
$=(2x-y)^2+2(2x-y)+1+(x+6)^2+1976$
$=(2x-y+1)^2+(x+6)^2+1976\geq 1976>0$ với mọi $x,y$
Do đó biểu thức không âm với mọi $x,y$
2(2x-y)+x2+12x+36+1997
=4x-2y+x2+12x+36+1997
=16x-2y+x2+2013 khác x2-2y+8x+2013
Bài bạn giải thế là sai r