Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy câu trên dễ
\(M=4a^2-6a+12\)
\(M=\left(2a\right)^2-2\cdot2a\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{39}{4}\)
\(M=\left(2a-\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\forall x\left(đpcm\right)\)
1. a) 2x2y - 3xy2 - 6x + 9y = 2x( xy - 3 ) - 3y ( xy - 3) = ( 2x - 3y)(xy - 3)
b) x2 - 2x + 8 = x2 - 2x + 12 - 1 + 9 = ( x - 1 )2 + 32 ( xem lại đề bài )
2. a) ( 2x - 1) 2 - (2x-1)(2x+3) = 5
(2x-1)(2x-1-2x-3) = 5
-4(2x-1) = 5
2x - 1 = -1,25
2x = -0,25
x= -0,125
b) x(x-9 ) = 0
x= 0 hoặc x = 9
c, ko hiểu
3, M = (2a)2 - 2.2a.1,5 + ( 1,5)2 + 9,75
M= ( 2a - 1,5)2 + 9,75
Vì ( 2a - 1,5 )2 \(\ge\)0 \(\forall x\)
\(\Rightarrow\)( 2a - 1,5)2 + 9,75 \(\ge9,75\forall x\)
Vậy biểu thức trên luôn dương
\(\left(3x\right)^2-2.3x.1+1+1\) =\(\left(3x-1\right)^2+1\) vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+1\ge1\Rightarrow\ge0\)
b)\(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) vì \(\Rightarrow\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ge0\)
c) \(2\left(x^2+x+\frac{1}{2}\right)\) \(\Rightarrow2\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{1}{2}-\left(\frac{1}{2}\right)^2\right)\) \(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\) vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\Rightarrow\ge0\)
*** : \(\ge0\) là luôn dươn r nha , cõ chỗ nào k hiểu ib mk <3
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Chứng minh bt k phụ thuộc vào biến:
a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)
Vậy giá trị của A k phụ thuộc vào biến
b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)
Vậy giá trị của bt B k phụ thuộc vào biến
Chứng minh luôn luôn dương:
a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì: \(\left(x-3\right)^2\ge0,\forall x\)
=> \(\left(x-3\right)^2+1>0,\forall x\)
=>đpcm
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)
=>đpcm
câu 2:
9x^2-6x+6>0
ta có (3x)^2-2.3.x+1+5
= (3x-1)^2+5
vì (3x-1)^2 lớn hơn hoặc bằng 0
=> (3x-1)^2+5>0 (đpcm)
Câu 1 : Rút gọn biểu thức:
(3x -1)2 + 2 (3x -1) (2x + 1) + (2x + 1)2
= (3x-1+2x+1)^2=25x^2
a,9x2-6x+2
=(3x)2-6x+1+1
=(3x-1)2+1\(\ge\)1\(\forall\)x
=> biểu thức trên..............
b,x2+x+11
=x2+x+1/4+10,75
=(x+1/2)2+10,75\(\ge\)10,75\(\forall\)x
=>biểu thức trên..............
c,2x2+2x+1
=2(x2+x+1/4+1/4)
=2[(x+1/2)2+1/4]
=2(x+1/2)2+1/2\(\ge\)1/2\(\forall\)x
=>biểu thức trên..............
a) \(9x^2-6x+2=\left(3x-1\right)^2+1>0\) \(\forall x\)
b) \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\)
c) \(2x^2+2x+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}>0\) \(\forall x\)