K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=-2(x^2-5/2x+2)

=-2(x^2-2*x*5/4+25/16+7/16)

=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x

b: B=x^2+5x+25/4+3/4

=(x+5/2)^2+3/4>=3/4>0 

=>B luôn dương với mọi x

c: C=x^2-20x+100+1

=(x-10)^2+1>=1>0 với mọi x

=>C luôn dương với mọi x

31 tháng 8 2021

a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)

Vậy ta có đpcm 

b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)

Vậy ta có đpcm 

c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)

\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)

Vậy ta có đpcm 

d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)

\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)

Vậy ta có đpcm 

e, tự làm nhé 

13 tháng 6 2019

Bài 1

\(a,\)\(49x^2-28x+7\)

\(=\left(7x\right)^2-2.7x.2+2^2+3\)

\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )

Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)

\(\Rightarrow7x-2=0\)

\(\Rightarrow x=\frac{2}{7}\)

13 tháng 6 2019

Bài 1 b

\(x^2+\frac{2}{5}x+\frac{1}{5}\)

\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)

\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )

Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)

\(\Rightarrow x+\frac{1}{5}=0\)

\(\Rightarrow x=-\frac{1}{5}\)

6 tháng 7 2018

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)

27 tháng 6 2017

Bài 1:

a, \(A=x^2+10x+29=\left(x^2+10x+25\right)+4\)

\(=\left(x+5\right)^2+4\ge4>0\)

\(\Rightarrowđpcm\)

b, \(B=x^2+5x+7=x^2+\dfrac{5}{2}x.2+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrowđpcm\)

c, \(C=25x^2+20x+11=25x^2+20x+4+7\)

\(=\left(5x+2\right)^2+7\ge7>0\)

\(\Rightarrowđpcm\)

Bài 2:

a, \(M=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x^2-2x+1+1\right)\)

\(=\left(x-1\right)^2-1\le-1< 0\)

\(\Rightarrowđpcm\)

b, \(N=x-x^2-1=-\left(x^2-x+1\right)\)

\(=-\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

1/

a, A = \(x^2+10x+29\)

=> A = \(x^2+10x+25+4\)

=> A = \(\left(x+5\right)^2+4\)

Ta thấy:

\(\left(x+5\right)^2\ge0\) với mọi x

=> \(\left(x+5\right)^2+4\ge4>0\)

=> \(\left(x+5\right)^2+4>0\)

hay \(A>0\)

Vậy biểu thức A luôn dương với mọi giá trị của x

b,B = \(x^2+5x+7\)

=> B = \(x^2+5x+\dfrac{25}{4}+\dfrac{3}{4}\)

=> B = \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

Ta thấy:

\(\left(x+\dfrac{5}{2}\right)^2\ge0\) với mọi x

=> \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

=> \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\)

hay \(B>0\)

Vậy biểu thức B luôn dương với mọi giá trị của x

c,\(C=25x^2+20x+11\) => \(C=25x^2+20x+4+7\)

=> C = \(\left(5x+2\right)^2+7\)

Ta thấy:

\(\left(5x+2\right)^2\ge0\) với mọi x

=> \(\left(5x+2\right)^2+7\ge7>0\)

=> \(\left(5x+2\right)^2+7>0\)

hay \(C>0\)

Vậy biểu thức C luôn dương với mọi giá trị của x

5 tháng 7 2017

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

5 tháng 7 2017

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2

5 tháng 7 2017

\(C=5x-x^2-30=-x^2+5x-\frac{25}{4}+\frac{25}{4}-30=-\left(x-\frac{5}{2}\right)^2-\frac{95}{4}\le-\frac{95}{4}< 0\)

16 tháng 7 2018

dài wa,lm xong chắc đến năm sau

1)A=3(x-1)^2-(x+1)^2+2(x-3)(x+3)-(2x+3)^2-(5-20x)

=3(x^2-2x+1)-(x^2+2x+1)+2(x^2-9)-(4x^2+12x+9)-(5-20x)

=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+20x

=-30

2)B=5x(x-7)(x+7)-x(2x-1)^2-(x^3+4x^2-246x)-175

=5x(x^2-49)-x(4x^2-4x+1)-x^3-4x^2+246x-175

=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175

=-175

cn lại lm tg tự nha bn

17 tháng 5 2019

Mình hỏi một câu nhé

Ko phụ thuộc vào giá trị của biến là gì

vì mình mới học nên đọc cx ko hiểu

Mong bạn giải thích hộ mình

Cảm ơn bạn nhiều

Bài 1 : 

a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)

TH1 : \(x^2-2x+3=0\)

\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm 

TH2 : \(x-4=0\Leftrightarrow x=4\)

b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)

TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)

\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)

TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)

c, đưa về hệ đc ko ? 

d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)

TH1 : \(x=0,74...\) ( bấm máy cx ra )

TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm 

KL : vô nghiệm 

Bài 2 : 

a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)

\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)

Vậy biểu thức ko phụ thuộc vào biến 

b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)

\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)

\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến