Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
3) Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\left(1\right)\\y^2+z^2\ge2yz\left(2\right)\\z^2+x^2\ge2zx\left(3\right)\end{cases}}\)
Cộng (1) , (2) , (3) theo vế được ; \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng câu trên được : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Tương tự : \(\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
Vậy \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
3) Đề đúng phải là : \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1\ge0\left(1\right)\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\ge0\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)(Luôn đúng)
Do đó (1) được chứng minh.
Bài 1:
Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)
Xét hiệu:
\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)
\(=x^2(x-y)-y^2(x-y)\)
\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)
Vì \(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm
\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)
\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)
Ta có đpcm.
Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:
\(111(x-2)\geq 1998\)
\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)
\(\Leftrightarrow x\geq 20\)
Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.
\(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2=x^2+2xy+2xz+2yz+z^2+y^2\)
sau đó chứng minh x2+y2+z2>(=)xy+yz+zx là được
1.
Xét hiệu:
\(x^3+y^3-\left(x^2y+xy^2\right)=\left(x^3-x^2y\right)-\left(xy^2+y^3\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\), Với mọi x, y không âm
Vậy \(x^3+y^3\ge x^2y+xy^2\)với mọi x, y không âm
2. \(111\left(x-2\right)\ge1998\Leftrightarrow x-2\ge\frac{1998}{11}\Leftrightarrow x\ge\frac{1998}{11}+2=\frac{2020}{11}\)
3. Xét hiệu:
\(\frac{a-b}{b}-1=\frac{a}{b}-1-1=\frac{a}{b}-2>\frac{2b}{b}-2=2-2=0\)Với mọi , a, b dương
Vậy \(\frac{a-b}{b}>1\)với mọi a, b dương
4) xét hiệu:
\(x^2+y^2+z^2+14-\left(4x+2y+6z\right)\ge0\)\
<=> \(x^2-4x+4+y^2-2y+1+z^2-6z+9=\left(x-2\right)^2+\left(y-1\right)^2+\left(z-3\right)^2\ge0\)luôn đúng vs mọi x, y, z
Vậy suy ra điều cần chứng minh
\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
a: \(VT=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\forall x,y\)
c: \(VT=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x,y\)
Nhân hai vế của đẳng thức với 2 :
2x^2 + 2y^2 - 2xy = (x^2 - 2xy + y^2)+y^2 + x^2 = (x - y)^2 + x^2 + y^2 >= 0
Đẳng thức xảy ra khi x = y = 0
Cả hai vế của đẳng thức nhân 2
2x2 + 2y2 - 2xy = ( x2 - 2xy + y2 ) + y2 + x2 = ( x - y )2 + x2 + y2 \(\ge\)0
Vậy đẳng thức xảy ra khi x = y = 0
k cho mình nha mọi người