Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu bạn dùng được bất đẳng thức cô-si cho hai số ko âm
\(\frac{x}{y}\)+\(\frac{y}{x}\)>=2\(\sqrt{\frac{x}{y}\frac{y}{x}}\)
<=>\(\frac{x}{y}\)+\(\frac{y}{x}\)>=2\(\sqrt{1}\)=2
đây là cách lớp 9 nên ko bt bạn làm đc ko??????
Không mất tính tổng quát,giả sử \(x\ge y\) (x và y không âm)
Đặt \(x=y+m\left(m\ge0\right)\).Ta có:
\(\frac{x}{y}+\frac{y}{x}=\frac{y+m}{y}+\frac{y}{y+m}=1+\frac{m}{y}+\frac{y}{y+m}\)
\(\ge1+\frac{m}{y+m}+\frac{y}{y+m}=1+\frac{m+y}{y+m}=1+1=2^{\left(đpcm\right)}\)
P/s: Đây là cách lớp 7,chắc áp dụng được nhỉ?
CMR : a) Có thể tìm được số có dạng 199119911991...19910...0 chia hết cho 1992
Help
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
\(x^2+y^2-xy\ge x+y-1\)
\(\Leftrightarrow2x^2+2y^2-2xy\ge2x+2y-2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2\ge0\)
Bat ddang thuc cuoiđung,cac phep biendddooii tren la tuong dduong nen BĐT cuoi ddung =>đpcm
xay ra--ddang--thuc khi x=y=1
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Tham khảo ở đây nha bạn!
http://olm.vn/hoi-dap/question/520851.html
\(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2=x^2+2xy+2xz+2yz+z^2+y^2\)
sau đó chứng minh x2+y2+z2>(=)xy+yz+zx là được
x2 + y2 + 2 \(\ge\)2( x + y )
<=> x2 + y2 + 2 - 2x - 2y \(\ge\)0
<=> ( x2 - 2x + 1 ) + ( y2 - 2y + 1 ) \(\ge\)0
<=> ( x - 1 )2 + ( y - 1 )2 \(\ge\)0 ( luôn đúng )
Vậy ĐPCM