Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{b}{c+a}< \frac{b}{b+c}\); \(\frac{c}{a+b}< \frac{c}{b+c}\); \(\frac{a}{b+c}< 1\)
\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)
b) Đặt \(x=b+c-a\); \(y=c+a-b\); \(z=a+b-c\);
Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\). \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)
Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\); \(\frac{y}{z}+\frac{z}{y}\ge2\); \(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)
hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)
No Name:Đây chính là bất đẳng thức Schur bậc 3
Do a,b,c bình đẳng ta giả sử \(a\ge b\ge c\)
Đặt \(a-b=x;b-c=y\)
Khi đó BĐT tương đương với:
\(c\left(x^2+xy+y^2\right)+x^2\left(x+2y\right)\ge0\left(true\right)\)
Vậy BĐT được chứng minh
\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
VT : (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2
= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (a + c)2 = VP
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)
(a2+ab+ac)(a2+ab+ac+bc)+b2c2
đặt a2+ab+ac=x; bc=y
=>x(x+y)+y2=x2+xy+y2>=0(đúng)
Sửa đề: a,b,c,d>0
C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)
Dấu " = " xảy ra <=> a+c=b+d
Theo em được biết thì bài a) chính là BĐT IMO 1983. Có cách giải quen thuộc là dùng phép thế Ravi ngoài ra còn có một lời giải tuyệt đẹp của Bernhard Leeb như sau:
a) Giả sử \(a=max\left\{a,b,c\right\}\). Ta có:\(VT=a\left(b+c-a\right)\left(b-c\right)^2+b\left(a+b-c\right)\left(a-b\right)\left(a-c\right)\ge0\)
Ngoài ra, từ cách phân tích trên em cũng tìm được một cách phân tích như sau:
Giả sử \(c=max\left\{a,b,c\right\}\). Ta có:
\(VT=\frac{\left[3ab+b\left(c-b\right)+4a\left(c-a\right)\right]\left(b-c\right)^2+b\left(a+b-c\right)\left(b+c-2a\right)^2}{4}\ge0\)(qed)
b) BĐT Schur bậc 3.
Lời giải:
BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)
Đặt \(a^2+ab+ac=t\)
BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)
Luôn đúng vì bình phương của một số thực luôn là số không âm
Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\) và \(bc=0\)