K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

Áp dụng bđt AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Nhân 2 vế của đẳng thức trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng BDT svacxo ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Dấu = khi a=b=c

Học tốt

AH
Akai Haruma
Giáo viên
30 tháng 8 2018

Lời giải:

Điều kiện: \(a>b\geq 0\)

Áp dụng BĐT Cô-si cho các số dương ta có:

\(a+\frac{4}{(a-b)(b+1)^2}=a-b+b+\frac{4}{(a-b)(b+1)^2}\)

\(=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)

\(\geq 4\sqrt[4]{(a-b).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{(a-b)(b+1)^2}}-1\)

\(=4-1=3\)

Ta có đpcm

Dấu "=" xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\Leftrightarrow a=2; b=1\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)

20 tháng 4 2017

Ta có: \(a^2+\dfrac{1}{4}\ge a\)

Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)

Cộng 3 cái vế theo vế ta được ĐPCM

15 tháng 12 2017

Áp dụng BĐT Cauchy dạng engel ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)

18 tháng 12 2017

theo bđt cauchy ta có

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

\(\Rightarrow dpcm\)

NV
25 tháng 4 2019

Với điều kiện \(a;b>0\)

\(P=8\left(a+4\right)+b+\frac{4b}{a}\ge8.2\sqrt{4a}+2\sqrt{b.\frac{4b}{a}}\)

\(P\ge32\sqrt{a}+\frac{4b}{\sqrt{a}}\ge2\sqrt{32.4.\frac{b\sqrt{a}}{\sqrt{a}}}=16\sqrt{2b}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=4\\b=32\end{matrix}\right.\)