K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

có : (x-y)2 \(\ge0,\forall x,y\)

==>x2-2xy+y2 \(\ge\)0 \(\forall x,y\)

==> 2.(x2+y2)\(\ge\)2xy +x2+y2 \(\forall x,y\)

==> x2+y2 \(\ge\)\(\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\) ( do x+y=2) \(\forall x,y\)

lại có (x2-y2)2\(\ge\)0\(\forall x,y\)

==> x4+y4-2x2y2 \(\ge\)0 \(\forall x,y\)

==> 2.(x4+y4) \(\ge\)2x2y2 + x4+y4 \(\forall x,y\)

==> x4+y4 \(\ge\)\(\dfrac{\left(x^2+y^2\right)^2}{2}\ge\dfrac{2^2}{2}=2\)

==> đpcm

dấu ''=,, xảy ra <=> \(\left\{{}\begin{matrix}x+y=2\\x-y=0\\x^2-y^2=0\end{matrix}\right.< =>x=y=1}\)

4 tháng 5 2018

dấu ''=,, xảy ra <=> x=y=1

AH
Akai Haruma
Giáo viên
16 tháng 12 2016

Lời giải:

Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ

Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$

$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ

Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$

Ta có đpcm

vì (x-2)^2*(y-3)^2=4

mà (x-2)^2 luôn>=0;(y-3)^2 luôn>=0;x,y là SNT nên 

suy ra  (x-2)^2*(y-3)^2=1*4=4*1(vì ko có số nào mũ 2=2)

trường hợp 1:(x-2)^2=1 và (y-3)^2=4

                     x=  3                   y=5

trường hợp 2:(x-2)^2=4 và  (y-3)^2=1

                          x=4(hợp số)loại

vậy số NT x là3;y là5

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

12 tháng 4 2016

A+B+C=\(x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz.1=xyz\)

5 tháng 5 2017

Ta có : A+B+C=x2yz+xy2z+xyz2=xyz(x+y+z)

màx+y+z=1 nên A+B+C=xyz.1=xyz

vậy A+B+C=xyz

26 tháng 4 2016

Trong đây có câu giống hệt: print - Thư viện Đề thi & Kiểm tra

Ở bài 17 í

19 tháng 4 2018

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

<=>

1 tháng 4 2016

y’ = 3x2 – 2mx – 2 , ∆’ = m + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.

Vậy hàm số luôn có một cực đại và một cực tiểu.

\(N=-\left(5x^4+9x^2+4\right)=-\left(5x^4+5x^2+4x^2+4\right)=-\left(5x^2+4\right)\left(x^2+1\right)< 0\)

Do đó: Đa thức N(x) vô nghiệm

3 tháng 4 2016

\(\left(\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\left(t-1\right)\left(t-2\right)\ge0\) với \(t=\frac{x}{y}+\frac{y}{x}\ge2\)

=>\(\left(t-1\right)\left(t-2\right)\ge0\) luôn đúng với t \(\ge2\)  dpcm

4 tháng 4 2016

bài này dễ