Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)
a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)
\(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)
\(=\frac{x^2+x+1}{x}\)
b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)
Vậy R > 3
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
a.
ĐKXĐ: \(x\ne\pm4\)
\(C=\left(\dfrac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right)\cdot\dfrac{\left(x+4\right)^2}{32}\) có lẽ là nhân
\(\dfrac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{\left(x+4\right)^2}{32}\)
\(=\dfrac{32}{\left(x+4\right)\left(x-4\right)}\cdot\dfrac{\left(x+4\right)^2}{32}=\dfrac{x+4}{x-4}\)
b.
\(C=1\Leftrightarrow x+4=x-4\Leftrightarrow0=-8\left(vo-li\right)\)
c.
\(C=\dfrac{1}{3}\Leftrightarrow3\left(x+4\right)=x-4\Leftrightarrow2x=-16\Leftrightarrow x=-8\)
d.
\(C>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+4< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)
Luân Đàotran nguyen bao quanDƯƠNG PHAN KHÁNH DƯƠNG
KHUÊ VŨNguyễn Huy TúAkai HarumaAce LegonaNguyễn Thanh HằngMashiro Shiina giúp mk vs
Khi r=0, bất đẳng thức trở thành tức là mà rõ ràng đúng.
Bây giờ giả sử bất đẳng thức đúng với r=k:
Cần chứng minh:
Thật vậy, (vì theo giả thiết ) (vì )
=> Bất đẳng thức đúng với r=k+1.
Theo nguyên lý quy nạp, chúng ta suy ra bất đẳng thức đúng với mọi
Số mũ r có thể tổng quát hoá thành số thực bất kỳ như sau: nếu x > −1, thì
với r ≤ 0 hoặc r ≥ 1, và
với 0 ≤ r ≤ 1.