K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

a2 + b2 + 4 ≥ ab + 2( a + b )

Nhân 2 vào từng vế của bất đẳng thức

<=> 2( a2 + b2 + 4 ) ≥ 2[ ab + 2( a + b ) ] 

<=> 2a2 + 2b2 + 8 ≥ 2ab + 4( a + b ) 

<=> 2a2 + 2b2 + 8 ≥ 2ab + 4a + 4b

<=> 2a2 + 2b2 + 8 - 2ab - 4a - 4b ≥ 0

<=> ( a2 - 2ab + b2 ) + ( a2 - 4a + 4 ) + ( b2 - 4b + 4 ) ≥ 0

<=> ( a - b )2 + ( a - 2 )2 + ( b - 2 )2 ≥ 0 ( đúng )

=> đpcm 

Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\a-2=0\\b-2=0\end{cases}}\Leftrightarrow a=b=2\)

11 tháng 9 2020

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\left(\forall x,y,z\in R\right)\)

=> đpcm

18 tháng 4 2020

Bài làm

a) Đặt a3 + b3 - ab2 - a2b = 0

<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0

<=> ( a + b )( a2 + ab + b2 - ab ) = 0

<=> ( a + b )( a2 + b2 ) = 0          (1) 

Mà a2 + b2 > 0 

=> ( a + b )( a2 + b2 ) > 0            (2) 

Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0 

Vậy a3 + b3 - ab2 - a2> 0 ( đpcm )

b) Đặt a5 + b5 - a4b - ab4 = 0

<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0

<=> a4( a - b ) + b4( b - a ) = 0

<=> a4( a - b ) - b4( a - b ) = 0 

<=> ( a - b )( a4 - b4 ) = 0              (1) 

Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0

=> ( a - b )( a4 - b4 ) < 0                (2) 

Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0

Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm ) 

12 tháng 4 2016

a^2+b^2+2>2(a+b)

<=> a^2+b^2+2> 2a + 2b>0

<=> (a^2 + 2a+1)+2> (b^2+2b+1)

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)