Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
O A B D C E
+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC
=> tam giác ODC cân tại O => OD = OC
mà AD = BC => OA = OB
+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA
=> Tam giác ODB = OCA (c - g - c)
=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA
=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)
Từ (1)(2) => OE là đường trung trực của CD
=> OE vuông góc CD mà CD // AB => OE vuông góc với AB
Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường trung trực
vậy OE là đường trung trực của AB
Vì ABCD là hình thang cân
Gọi H là giao điểm AB và OE
=> AB // CD
ADC = BCD
Mà OAB = ADC ( đồng vị)
BCD = OBA ( đồng vị)
Mà ADC = BCD
=> ∆BOA cân tại O
Tự xét ∆OAH = ∆OBH(c.g.c)
=> HA = HB
=> OH vuông góc với AB
Hay OE vuông góc với AB
=> OE là trung trực AB
Gọi G là giao điểm DC và OE
Mà AB//CD(cmt)
=> GHB = HGD = 90°
=> OG vuông góc với DC
Hay OE vuông góc với DC
Tự xét ∆ACD = ∆BDC
=> DAE = CBE ( tg ứng )
Tự xét ∆AED = ∆BEC (g.c.g)
=> DE = EC
=> DEC cân tại E
Mà ∆DEC có OH là đường cao
=> OH là trung trực DC
Hay OE là trung trực DC(dpcm)
Vì ABCD là hình thang cân
Gọi H là giao điểm AB và OE
=> AB // CD
ADC = BCD
Mà OAB = ADC ( đồng vị)
BCD = OBA ( đồng vị)
Mà ADC = BCD
=> ∆BOA cân tại O
Tự xét ∆OAH = ∆OBH(c.g.c)
=> HA = HB
=> OH vuông góc với AB
Hay OE vuông góc với AB
=> OE là trung trực AB
Gọi G là giao điểm DC và OE
Mà AB//CD(cmt)
=> GHB = HGD = 90°
=> OG vuông góc với DC
Hay OE vuông góc với DC
Tự xét ∆ACD = ∆BDC
=> DAE = CBE ( tg ứng )
Tự xét ∆AED = ∆BEC (g.c.g)
=> DE = EC
=> DEC cân tại E
Mà ∆DEC có OH là đường cao
=> OH là trung trực DC
Hay OE là trung trực DC
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath
A B C D E M N O
Vẽ hình thang ABCD (AB//CD), giao điểm của AD và BC là E, giao điểm của AC và BD là O; M, N lần lượt là trung điểm của AB và DC.
Ta cần chứng minh E, M, O, N cùng thuộc một đường thẳng.
Gọi N' là giao điểm của EM với DC.
Do AB// CD nên áp dụng định lý Ta let cho các tam giác EDN' và EN'C , ta có:
\(\frac{AM}{DN'}=\frac{EM}{EN'}=\frac{BM}{N'C}\)
Lại có AM = BM nên DN' = N'C hay N' là trung điểm DC.
Suy ra N' trùng N hay E, M, N thẳng hàng.
Gọi N'' là giao điểm của MO với CD.
Do AB// CD nên áp dụng hệ quả định lý Ta let, ta có :
\(\frac{AM}{N''C}=\frac{MO}{ON''}=\frac{MB}{DN''}\)
\(\Rightarrow N''C=DN''\) hay N'' trùng N.
Vậy nên E, M, O, N thẳng hàng.