K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Online Math - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

$a^{2014}+\underbrace{1+1+....+1}_{2013}\geq 2014\sqrt[2014]{a^{2014}}$

$\Leftrightarrow a^{2014}+2013\geq 2014a$

$\Rightarrow a^{2014}+2014> 2014a$

$\Rightarrow a^{2014}> 2014(a-1)$ (đpcm)

30 tháng 4 2019

Ta có : \(a^{2012}+b^{2012}+a^{2014}+b^{2014}=\left(a^{2012}+a^{2014}\right)+\left(b^{2012}+b^{2014}\right)\ge2a^{2013}+2b^{2013}\)

( AD BĐT Cô - si cho a ; b dương ) 

Dấu " = " xảy ra \(\Leftrightarrow a^{2012}=a^{2014};b^{2012}=b^{2014}\) \(\Leftrightarrow a=b=1\left(a,b>0\right)\)

\(\Rightarrow a^{2015}+b^{2015}=1+1=2\)

5 tháng 5 2015

Chia cả tử và mẫu của mỗi phân số tương ứng cho b2015; b2014

=> cần chứng minh: \(\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}>\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}\)

Ta có: \(VT=\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}=\frac{\left(\frac{a}{b}\right)^{2015}+1}{\left(\frac{a}{b}\right)^{2015}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}\)

\(VP=\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}=\frac{\left(\frac{a}{b}\right)^{2014}+1}{\left(\frac{a}{b}\right)^{2014}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

Vì a> b > 0 => a/b  > 1. Do đó:

\(\left(\frac{a}{b}\right)^{2015}+1>\left(\frac{a}{b}\right)^{2014}+1\)

=> \(\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}<\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\Rightarrow1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}>1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

=> VT > VP 

13 tháng 3 2017

a, chắc bạn chép nhầm đề rồi đó nếu mà là 3ab thì k làm đc đâu

M=a+ a- b3 + b2 + 3ab2 -2ab +3ab2

= (a-b)3 +(a-b)2

= 343+49=392

b, P= -(3x+4x2+1/4x-2014)

= - [ (2x)2 -4x+1 +x +1/4x - 2015]

= -[ (2x-1)2- (2x-1)2/4x +1 -2015]

Max P = 2014   X=1/2

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng