Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
a, Ta thấy: 3 n + 2 + 3 n = 3 n . 3 2 + 3 n
= 3 n 3 2 + 1 = 3 n . 10 chia hết cho 10
=> 3 n + 2 + 3 n chia hết cho 10, n ∈ N
b, 7 n + 4 - 7 n = 7 n . 7 4 - 7 n
7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30
=> 7 n + 4 - 7 n chia hết cho 30, n ∈ N
(16n+8)(3n-2)=(8.2n+8.1)(3n-2)=8(2n+1)
ta có 6=2.3
vì n(n+1)(n+2) là ba số nguyên liên tiếp nên
n(n+1)(n+2) chia hết cho 2 và 3 nên n(n+1)(n+2) chia hết cho 6
Ta có : \(\left(16n+8\right)\left(3n-2\right)\)
Xét \(16n+8=8.2n+8=8.2\left(n+1\right)⋮8\)
\(\Rightarrow16n+8⋮8\Leftrightarrow\left(16n+8\right)\left(3n-2\right)⋮8\Rightarrowđpcm\)
Ta có : \(n\left(n+1\right)\left(n+2\right)\) là 3 số TN liên tiếp
Ta có tổng của 3 số TN liên tiếp chia hết cho 3 và 2
Ta có tích của 3 số TN liên tiếp chia hết cho 3 và 2.
* Nếu n chẵn ( n = 2k ) => 3n + 2 là chẵn
=> 3n + 2 chia hết cho 2
=> A chia hết cho 2
* Nếu n lẻ ( n = 2k + 1 ) => n + 1 chẵn
=> n + 1 chia hết cho 2
=> A chia hết cho 2
Vậy A = ( n + 1 . ( 3n + 2 ) chia hết cho 2 với mọi n thuộc N
Đề bài là tìm n chứ:
a) Ta có:
\(n+5⋮n+2\)
\(\Rightarrow\left(n+2\right)+3⋮n+2\)
\(\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{-3;-1;-5;1\right\}\)
b) Ta có:
\(2n+1⋮n-5\)
\(\Rightarrow\left(2n-10\right)+11⋮n-5\)
\(\Rightarrow2\left(n-5\right)+11⋮n-5\)
\(\Rightarrow11⋮n-5\)
\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)
Vậy \(n\in\left\{4;6;-6;16\right\}\)
c) Ta có:
\(n^2+3n-13⋮n+3\)
\(\Rightarrow n\left(n+3\right)-13⋮n+3\)
\(\Rightarrow-13⋮n+3\)
\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)
Vậy \(n\in\left\{-4;-2;-16;10\right\}\)
Ta có hai trường hợp :
TH1 : nếu n lẻ => 3n lẻ => 3n + 2015 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
TH2 : nêu n chẵn => 3n chẵn => 3n + 2016 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
Với n thuộc N thì A=(3n+2015)(3n+2016) là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
(Có thể xét 2 th n là số chẵn và n là số lẻ để chứng minh)
A (n) = n^2 + 3n = n( n + 3 )
(+) n là số chẵn => n = 2k thay vào ta có
2k ( 2k + 3 ) luôn luôn chia hết cho 2
(+) n là số lẻ => n = 2k +1 thay vào ta có :
n ( n+ 3 ) = ( 2k + 1 )( 2k + 4) = 2 ( 2k + 1 )( k + 2) luô luôn chia hết cho 2
VẬy A (n) luôn luôn chia hết cho 2
CÁi sau tương tự
câu a) n^2+ 3n=n^2 +1n+ 2n
=n(n+1)+2n
(mà n (n +1) là tích của 2 số tự nhiên liên tiêp
nên n(n+1) chia hết cho 2 và 2n cũng chia hết cho 2 )
=>n(n+1) chia hết cho 2
câu b)n (n +1) là tích của 2 số tự nhiên liên tiêp
nên n(n+1) chia hết cho 2