Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)
Bài 2:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)
Bài 3:
Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)
Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k
x=2k
Lại có xy=96
\(\Rightarrow2k3k=96\)
\(\Rightarrow6k^2=96\)
\(\Rightarrow k=\pm4\)
Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)
\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)
Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:
(x;y)=(8;12)
(x;y)=(-8;-12)
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
\(a+b=ab=\dfrac{a}{b}\)
Ta có:
\(ab=\dfrac{a}{b}\Rightarrow ab=\dfrac{a^2}{ab}\)
\(\Rightarrow a^2b^2=a^2\)
\(\Rightarrow b^2=1\Rightarrow b=\pm1\)
Xét:
\(b=1\Rightarrow a+b=ab=\dfrac{a}{b}\Rightarrow a+1=a=a\left(KTM\right)\)
Xét:
\(b=-1\Rightarrow a+b=ab=\dfrac{a}{b}\Rightarrow a-1=-a=-a\)
\(\Rightarrow a-1=-a\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Ta có:
\(\dfrac{a}{b}=a-1\rightarrowđpcm\)
\(b=-1\rightarrowđpcm\)
\(a=\dfrac{1}{2}\)
a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của day tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
⇒\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)
Xét VP=(a+b)(a^2-ab+b^2)
=a^3+a^2.b-a^2.b-a.b^2+a.b^2+b^3
=a^3+b^3
Mk giai nhu vay ban co hieu ko???
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-a^2b+ab^2-ab^2\) \(+ba^2-ab^2+b^3=a^3+b^3\Rightarrowđpcm\)