K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

Chứng minh a^2 + 5b^2 - (3a + b) >= 3ab - 5,a^2 + 5b^2 - (3a + b) >= 3ab - 5,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

1 tháng 5 2019

a) vì a<b

<=>-5a>-5b

mà 7>2

<=>7-5a>2-5b

b) vì m<n <=>2m<2n<=>2m-5<2n-5

2 tháng 8 2016

\(a^2+5b^2-4ab+2a-6b+3\)

\(=a^2-4ab+2a+5b^2-6b+3\)

\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)

\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)

\(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b)  (đpcm)

19 tháng 5 2018

Ta có : ( x - 2 )2 \(\ge\)\(\Leftrightarrow\)x2 - 4x + 4 \(\ge\)0

\(\Rightarrow\)  x2 \(\ge\)4x - 4 \(\Rightarrow\)x2 \(\ge\)4 . ( x - 1 ) \(\Rightarrow\)\(\frac{x^2}{x-1}\)\(\ge\)4

\(\Rightarrow\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge4.4+5.4+3.4=48\)

10 tháng 4 2020

Dấu tương đương chứ!

Ta có :

\(a\le b\)

\(\Rightarrow5a\le5b\)

\(\Rightarrow5a-100\le5b-100\)

\(\Rightarrow-5a+100\ge-5b+100\)(đpcm)

9 tháng 4 2017

a) \(a< b\Rightarrow4a< 4b\Rightarrow4a+1< 4b+1\)

\(4b+1< 4b+3\)

\(\Rightarrow4a+1< 4b+3\)

b) \(a< b\Rightarrow-5a>-5b\Rightarrow-5a-1>-5b-1\)

\(-5b-1>-5b-4\)

\(\Rightarrow-5a-1>-5b-4\)