Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(\(\dfrac{a+b}{2};\dfrac{b+c}{2};\dfrac{c+a}{2}\))(\(d\ne0,d⋮2\))
Ta có:\(\dfrac{a+b}{2}⋮d,\dfrac{b+c}{2}⋮d,\dfrac{c+a}{2}⋮d\)
\(\Rightarrow\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}⋮d\)
\(\Rightarrow\dfrac{a+b+b+c+c+a}{2}⋮d\)
\(\Rightarrow a+b+c⋮d\)
\(\Rightarrow a,b,c⋮d\)
\(\Rightarrow\)ƯCLN(a,b,c)=ƯCLN(\(\dfrac{a+b}{2};\dfrac{b+c}{2};\dfrac{c+a}{2}\))
P/S không chắc đâu nhất là 2 bước cuối
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
Gọi d là ƯCLN(a;b;c) =>d lẻ vì các số a,b,c là các số lẻ (1)
(+) a chia hết cho d
(+) b chia hết cho d
=>a+b chia hết cho d (2)
Mặt khác vì a,b là các số lẻ nên a+b sẽ chia hết cho2 (3)
Từ (1);(2) và (3) =>\(\frac{a+b}{2}\) phải chia hết cho d
C/m tương tự ta có \(\frac{b+c}{2};\frac{c+a}{2}\) cũng chia hết cho d
=>đpcm
chứng minh cái gì bạn?