Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4A=4\left(1+4+4^2+.........+4^{1000}\right)\)
\(4A=4+4^2+........+4^{1001}\)
\(\Rightarrow4A-A=\left(4+4^2......+4^{1001}\right)-\left(1+4+4^2+......+4^{1000}\right)\)
\(\Rightarrow3A=4^{1001}-1\)
\(\Rightarrow A=\frac{4^{1001}-1}{3}\)
Ta có:
A=(41+42)+(43+44)+...+(499+4100)
A=4.(1+4)+43.(1+4)+...+499.(1+4)
A=4.5+43.5+...+499.5
A=5.(4+43+...+499)
=>A chia hết cho 5
bài này tớ đã biết nhưng chỉ thử các bạn thôi... cám ơn nhiều nha
1.
\(\left(x+2\right)^3=\frac{1}{8}\)
\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x+2=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}-2\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}.\)
2.
b) Ta có:
\(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.\left(25-5+1\right)\)
\(=5^3.21\)
Vì \(21⋮7\) nên \(5^3.21⋮7.\)
\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)
c) Ta có:
\(2^{19}+2^{21}+2^{22}\)
\(=2^{19}.\left(1+2^2+2^3\right)\)
\(=2^{19}.\left(1+4+8\right)\)
\(=2^{19}.13\)
Vì \(13⋮13\) nên \(2^{19}.13⋮13.\)
\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!
Đặt A=\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
A=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
A=\(3^1\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
A=\(3^1\cdot4+3^3\cdot4+...+3^{99}\cdot4\)
A=\(4\left(3^1+3^3+...+3^{99}\right)⋮4\left(đpcm\right)\)
đặt \(S=1+4+4^2+......+4^{1999}\)
\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)
\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)
\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)
Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
75 chia hết cho 25.
42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4
=> 75(42007 + ... + 4 + 1) không chia hết cho 100.
\(A=75\left(4^{2004}+...+4+1\right)+25\)
\(=25\left(4-1\right)\left(4^{2004}+...+4+1\right)+25\)
\(=25\left[4\left(4^{2004}+...+4+1\right)-\left(4^{2004}+...+4+1\right)\right]+25\)
\(=25\left[\left(4+4^2+...+4^{2005}\right)-\left(1+4+...+4^{2004}\right)\right]+25\)
\(=25\left(4^{2005}-1\right)+25\)
\(=25.4^{2005}-25+25\)
\(=100.4^{2004}⋮100\)
đừng giải
\(A=1+4+4^2+......+4^{100}\)
\(A=5+4+4^2+.....+4^{100}\)
\(A=5+4\left(1+4\right)+4^3\left(1+4\right)+......+4^{99}\left(1+4\right)\)
\(A=5+4\cdot5+4^3\cdot5+......+4^{99}\cdot5\)
\(A=5\left(1+4+4^3+.....+4^{99}\right)⋮5\)
Vậy \(A⋮5\)