K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(7^0+7^1+7^2+7^3+...+7^2010+7^2011):8

=(7^0+7^1)+(7^2+7^30+...+(7^2010+7^2011)

=(7^0.7^0+7^1.7^0)+...+(7^2010.7^0+7^2011.7^1)

=7^0+7^0+...+7^0

=7^0:8

14 tháng 12 2017

Mk chỉ hướng dẫn thui nhé ! ( Thông cảm cho mk )

Bạn gộm các số lại với nhau sao cho xuất hiện số có thể chia hết cho số cần chứng minh .

Vd : 2 + 22 + 23 + 24 + ... + 298 + 299 chia hết cho 6

= ( 2 + 22 ) + ( 23 + 24 ) + ... + (298 + 299 )

= 6 + ( 23 + 24 ) + ... + (298 + 299 )

Sau đó bạn làm các số sau cũng xuất hiện số đó

= 6 + 22 . ( 2 + 22 ) + ... + 297 . ( 2 + 22 )

= 6.1 + 22.6 + ... + 297.6

Rồi bạn đưa số chung ra đầu và nó sẽ như thế này :

= 6 . ( 1 + 22 + ... + 297 ) chia hết cho 6

Các ý bạn đưa ra có thể làm theo ý mk VD

~ CHÚC BẠN THI HK TỐT NHÉ ! ~

14 tháng 12 2017

Thank you very much.

30 tháng 10 2020

Bài toán này rất khó, dành cho học sinh giỏi

30 tháng 10 2020

Gợi ý : Ghép 2 số liền nhau thành một cặp rồi đặt thừa số chung ra ngoài .

4 tháng 7 2016

ta xét :\(2^4-4^2=2^4-\left(2^2\right)^2=2^4-2^4=0\)

=> giá trị biểu thức =0

4 tháng 7 2016

thanks

28 tháng 10 2016

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

29 tháng 10 2016

Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà