K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

vẫn có trường hợp >0 mà bn

6 tháng 6 2017

min \(min\frac{x}{\sqrt{x}-2}voix>4\)

2 tháng 9 2017

a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))

2 tháng 9 2017

\(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))

7 tháng 9 2020

+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)    \(\left(ĐK:x\ge0\right)\)

        \(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)

        \(\Leftrightarrow3\sqrt{3x}=6\)

        \(\Leftrightarrow\sqrt{3x}=2\)

        \(\Leftrightarrow3x=4\)

        \(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)

Vậy \(S=\left\{\frac{4}{3}\right\}\)

+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\)    \(\left(ĐK:x\ge1\right)\)

        \(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

        \(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)

        \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)

 Vậy \(S=\left\{1,15\right\}\)

+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\)       \(\left(ĐK:x\ge0\right)\)

         \(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

         \(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

   Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)

    \(\Rightarrow\)\(\sqrt{x}-4< 0\)

   \(\Leftrightarrow\)\(\sqrt{x}< 4\)

   \(\Leftrightarrow\)\(x< 16\)

   Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)

 Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)

7 tháng 9 2020

\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)  (Đk: x \(\ge\)0)

<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)

<=> \(3\sqrt{3x}=6\)

<=> \(\sqrt{3x}=2\)

<=> \(3x=4\)

<=> \(x=\frac{4}{3}\)

\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)

<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\) 

<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)

\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)

<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

<=>  \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)

<=> \(\sqrt{x}< 4\) <=> \(x< 16\)

Kết hợp với đk => S = {x|0 < x < 16}

12 tháng 7 2018

\(A=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=4\sqrt{x}-\left(\sqrt{x}+3\right)\)

\(=3\sqrt{x}-3\)

\(B=\frac{\sqrt{\left(3x+2\right)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)

\(TH1:3x+2>0\Rightarrow B=1\)

\(TH2:3x+2< 0\Rightarrow B=-1\)

12 tháng 7 2018

A <=> 4√x - [ ( (√x )^2 + 2√x3+ 3^2)*( √x -3)]/ (x-9)

<=> 4√x - [(√x+3)^2×(√x-3)]/( x-9)

<=> 4√x - [(√x+3)*(x-9)]/(x-9)

<=> 4√x - √x -3

<=> 3√x -3

b, <=> √[(3*x) ^2+2*3x*2+2^2]/(3x+2)

<=> √[( 3x+2)^2] /(3x+2) 

<=> (3x+2)/(3x+2) = 1

23 tháng 7 2017

a) \(\sqrt{\dfrac{9x^2}{25}}+\dfrac{1}{5}x\) (x<0)

=\(\dfrac{-3x}{5}+\dfrac{x}{5}\) (vì x<0)

=\(\dfrac{-2x}{5}\)

b)2xy\(\sqrt{\dfrac{9x^2}{y^6}}-\sqrt{\dfrac{49x^2}{y^2}}\) (x<0 , y>0)

=2xy\(\dfrac{-3x}{y^3}+\dfrac{7x}{y}\)(vì x<y<0)

=\(\dfrac{-6x}{y^2}+\dfrac{7xy}{y^2}\)

=\(\dfrac{7xy-6x}{y^2}\)

c) \(\dfrac{1}{ab}\sqrt{a^6\left(a-b\right)^2}\) (a<b<0)

=\(\dfrac{1}{ab}\sqrt{a^6}\sqrt{\left(a-b\right)^2}\)

=\(\dfrac{1}{ab}\left(-a^3\right)\left(b-a\right)\) (vì a<b<0)

=\(\dfrac{\left(a-b\right)a^3}{a-b}\)

=a3

24 tháng 7 2017

Cảm ơn bạn Thu Trang nhiều nhé, sau này có gì giúp đỡ nhau nha. vuivui

30 tháng 3 2018

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

30 tháng 3 2018

minh lop 5 dang chi minh muon nick cua minh

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)