Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 210 + 211 + 212 = 210.(1 + 2 + 22) = 210.7 chia hết cho 7
b) 810 - 89 - 88 = 88.(82 - 8 - 1) = 88.55 chia hết cho 55
A=(7100-3100)*(210+211+212)
A=[(74)25-(34)25]*(210+210.2+210.22)
A=(240125-8125)*210(1+2+22)
A=(.........1-.......1)*210.7
A=..........0*210.7
Vì A chia hết cho 10 và 7 nên A chia hết cho 70
a)2^10+2^11+2^12
=2^10+2^10.2+2^10.2^2
=2^10.(1+2+2^2)
=2^10.7 chia hết cho 7
2^10+2^11+2^12
=2^10+2^10.2+2^10.2^2
=2^10.(1+2+2^2)
=2^10.7 chia hết cho 7
Ta có : 122004 = 12501.4 = (.......6)
122000 = 12500.4 = (.....6)
=> 122004 - 122000 = (......6) - (......6) = 0
Vậy 122004 - 122000 chia hết cho 10
a)Ta thấy: 6 đồng dư với 1(mod 5)
=>6100 đồng dư với 1100(mod 5)
=>6100 đồng dư với 1(mod 5)
=>6100-1 đồng dư với 1-1(mod 5)
=>6100-1 đồng dư với 0(mod 5)
=>6100-1 chia hết cho 5
b)Ta thấy:21 đồng dư với 1(mod 10)
=>2120 đồng dư với 120(mod 10)
=>2120 đồng dư với 1(mod 10)
11 đồng dư với 1(mod 10)
=>1110 đồng dư với 110(mod 10)
=>1110 đồng dư với 1(mod 10)
=>2120-1110 đồng dư với 1-1(mod 10)
=>2120-1110 đồng dư với 0(mod 10)
=>2120-1110 chia hết cho 10
=>2120-1110 chia hết cho 2 và 5
c)Ta thấy:10 đồng dư với 1(mod 3)
=>109 đồng dư với 19(mod 3)
=>109 đồng dư với 1(mod 3)
=>109+2 đồng dư với 1+2(mod 3)
=>109+2 đồng dư với 3(mod 3)
=>109+2 đồng dư với 0(mod 3)
=>109+2 chia hết cho 3
d)Ta thấy:10 đồng dư với 1(mod 9)
=>1010 đồng dư với 110(mod 9)
=>1010 đồng dư với 1(mod 9)
=>1010-1 đồng dư với 1-1(mod 9)
=>109-1 đồng dư với 0(mod 9)
=>109-1 chia hết cho 9
a) 6100 - 1 = (....6) - 1 = (....5) => hiệu đó chia hết cho 5
2110 - 1110 = (....1) - (....1) = (...0) => hiệu đó chia hết cho 2 và 5
109 + 2 = 100..2 . tổng các chữ số bằng 3 => số đó chia hết cho 3
1010 - 1 = 999...9 = 9.111....1 chia hết cho 9
Câu a và câu b bài 2 xem Câu hỏi tương tự
Bài 2 câu c :
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 )
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0
=> Số tận cùng của A = 0.
Bài 1 để nghiên cứu