K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

d=(2n+5;3n+7)

=> 3(2n+5) - 2(3n+7) = 6n +15 - 6n -14 =1 chia hết cho d

=> d =1 

Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

15 tháng 11 2015

Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) là d. Ta có:

2n + 5 chia hết cho d => 3(2n + 5) = 6n + 15 chia hết cho d.

3n + 7 chia hết cho d => 2(3n + 7) = 6n + 14 chia hết cho d.

=> ( 6n + 15 ) - ( 6n + 14 ) chia hết cho d.

=> 1 chia hết cho d

=> d = 1

Vây 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau=>> ĐPCM

11 tháng 4 2018

Gọi ƯCLN ( 2n + 5, 3n + 7 ) là d

\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)\(\Leftrightarrow\)\(1⋮d\)\(\Rightarrow\)\(d=1\)Hoặc có thể nói 2n + 5 và 3n + 7 nguyên tố cùng nhau

11 tháng 4 2018

Gọi ƯCLN (2n+5;3n+7) là d

=> (2n+5) chia hết cho d => 3(2n+5) chia hết cho d => (6n+15) chia hết cho d

=> (3n+7) chia hết cho d => 2(3n+7) chia hết cho d => (6n+14) chia hết cho d

=> (6n+15) - (6n+14) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

Mà d lớn nhất => d=1

=> 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

CHÚC BẠN HỌC TỐT NHA!

25 tháng 11 2018

Lám đc chưa, tớ giải cho

1 tháng 12 2018

Xin lỗi nha máy mình ko viết đc một số dấu ,có gì sai sót  mong mọi người thông cảm và sửa lại giúp mình nha!

1)Gọi ước chung lớn nhất của 2n+1 và 2n+3 là a,với a thuộc tập hợp số tự nhiên

=>2n+1:a và 2n+3:a

=>(2n+3)-(2n+1):a

=>2:a

=>a thuộc tập hợp ước của 2

=>ước của 2=(1;2)

=>a=1;2

Vì 2n:2,với n thuộc tập hợp số tự nhiên,1 /:2

=>a=1

=>(2n+1,2n+3)=1

=>2n+1 và 2n+3 là hai số nguyên tố chùng nhau

CHÚC MỌI NGƯỜI HỌC TỐT NHÉ!

4 tháng 1 2017

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      = 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1

Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

2 tháng 12 2017

gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)

suy ra  2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d

           3n+5 chia hết cho d }  2(3n+5) chia hế cho d } 6n+10 chia hết cho d

suy ra [(6n+10) -(6n+9) chia hết  cho d

        =[(6n-6n)+(10-9)] chia hết cho d

        =[0+1] chia hết cho d

        =1 chia hết cho d

vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1

Bài 1)Vì M là trung điểm của OC

=> MO = CM

Vì N là trung điểm của OD
=> ON = ND

Ta có: CM + MO + ON + ND = CD= 8cm

Mà MN = MO + ON

=> MN = 1/2 CD = 1/2 x 8 = 4cm

Vậy MN = 4cm

Bài 2)

1) Gọi ƯCLN(2n + 5; 3n+7) = d

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2(3n+7)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\varepsilonƯ\left(1\right)\)

=> d = 1

Vậy 2n + 5 và 3n +7 là 2 số nguyên tố cùng nhau

2, Gọi ƯCLN(2n + 1; 2n + 2) = d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\) 

\(\Rightarrow1⋮d\Rightarrow d\varepsilonƯ\left(1\right)\)

=> d = 1

Vậy 2n +1 và 2n +2 là 2 số nguyên tố cùng nhau

29 tháng 11 2019

Bài 1 :

Ta có : M là trung điểm CO

  \(\Rightarrow\)MO = 1 / 2 OC ( 1 )

Ta lại có : N là trung điểm OD

        \(\Rightarrow\)NO = 1 / 2 OD ( 2 )

Cộng ( 1 ) và ( 2 ), ta được :

            MO + NO = 1 / 2 OC + 1 / 2 OD

\(\Leftrightarrow\)MN           = 1 / 2 . ( OC + OD )

\(\Leftrightarrow\)MN           = 1 / 2 . 8

\(\Leftrightarrow\)MN           = 4 cm

16 tháng 12 2019

nếu mk làm đúng thì cho mk nha

Gọi \(ƯCLN\) của \(2n+5\) và \(3n+7\) là d \(\Rightarrow2n+5⋮d;3n+7⋮d\)

\(\Rightarrow3\left(2n+5\right)⋮d\Leftrightarrow6n+15⋮d\)

\(\Rightarrow2\left(3n+7\right)⋮d\Leftrightarrow6n+14⋮d\)

\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\) \(2n+5\) và \(3n+7\) là 1 \(\Rightarrow\) Hai số nguyên tốt cùng nhau

17 tháng 12 2017

Bài 1:

Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)

Thay a = 16.m, b = 16.n vào a+b = 128, ta có:

\(16.m+16.n=128\)

\(\Rightarrow16.\left(m+n\right)=128\)

\(\Rightarrow m+n=128\div16\)

\(\Rightarrow m+n=8\)

Vì m và n nguyên tố cùng nhau

\(\Rightarrow\) Ta có bảng giá trị:

m1835
n8153
a161284880
b128168048

Vậy các cặp (a,b) cần tìm là:

  (16; 128); (128; 16); (48; 80); (80; 48).

Bài 2:

Gọi d là ƯCLN (2n+1, 2n+3), d  \(\in\) N*

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Vì 2n+3 và 2n+1 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)

\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

17 tháng 12 2017

cam on ban nhieu lam cuu tinh

19 tháng 11 2015

gọi UCLN(2n+5;3n+7) là d

ta có :

2n+5 chia hết cho d =>3(2n+5) chia hết cho d =>6n+15 chia hết cho d

3n+7 chia hết cho d =>2(3n+7 ) chia hết cho d =>6n+14 chia hết cho d

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(..)=1

=>nguyên tố cùng nhau 

=>dpcm

8 tháng 7 2017

Gọi ƯCLN (2n+3,3n+4) là d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)

\(\Rightarrow6n+9-\left(6n+8\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)2n+3 và 3n+4 nguyên tố cùng nhau

12 tháng 7 2017

ban oi tai sao lai lam nhu vay