K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Giả sử tồn tại n để 2n -1 =a2

\(\Rightarrow a\)lẻ. Khi đó: a- 1 = 2n - 2

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)=2\left(2^{n-1}-1\right)\)

Vì a lẻ \(\Rightarrow a=2k+1\Rightarrow2k\left(2k+2\right)=2\left(2^{n-1}-1\right)\Rightarrow4k\left(k+1\right)=2\left(2^{n-1}-1\right)\)(vô lý)

Vậy với mọi n thì 2n-1 không là số chính phương

9 tháng 6 2017

phải có điều kiện \(n>1\)nữa

4 tháng 9 2016

Ta có: A=(n2+3n)(n2+3n+2)

Đặt n2+3n=x ==>A=x(x+2)=x2+2x 

Theo bài ra A là scp ==>x2+2x là SCP 

Mà x2+2x+1 cũng là SCP

Hai SCP liên tiếp chỉ có thể là 0và1 ==>A=0==>x=0==>n2+3n=0<=>n=0

cho mik nhé

4 tháng 9 2016

Ta có A = n(n+3)(n+1)(n+2) = (n2 + 3n)(n2 + 2n + 2)

Đặt n2 + 3n = t thì

A = t(t+2)

Ta có t2 < t2 + 2t = A < (t + 1)= t2 + 2t + 1

Giữa hai số chính phương liên tiếp không tồn tại 1 số chính phương

Vậy A không phải là số chính phương 

20 tháng 8 2020

để A là số chính phương thì

\(x^2-3x+2=m^2\left(m\in N\right)\)

\(\Leftrightarrow4\left(x^2-3x+2\right)=4m^2\)

\(\Leftrightarrow\left(2x\right)^2-12x+8=\left(2m\right)^2\)

\(\Leftrightarrow\left(2x\right)^2-2.6.x+6^2-28=\left(2m\right)^2\)

\(\Leftrightarrow\left(2x-6\right)^2-\left(2m\right)^2=28\)

\(\Leftrightarrow\left(2x-6-2m\right)\left(2x-6+2m\right)=28\)

Vì \(x,m\in N\)nên  \(\left(2x-6-2m\right)\le\left(2x-6+2m\right)\)

\(\Leftrightarrow\hept{\begin{cases}\hept{\begin{cases}2x-6-2m=1\\2x-6+2m=28\end{cases}}\\\hept{\begin{cases}2x-6-2m=2\\2x-6+2m=14\end{cases}}\\\hept{\begin{cases}2x-6-2m=4\\2x-6+2m=7\end{cases}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\hept{\begin{cases}x=\frac{41}{4}\left(loại\right)\\m=\frac{27}{4}\left(loại\right)\end{cases}}\\\hept{\begin{cases}x=4\left(chọn\right)\\m=0\left(chọn\right)\end{cases}}\\\hept{\begin{cases}x=\frac{11}{4}\left(loại\right)\\m=-\frac{9}{4}\left(loại\right)\end{cases}}\end{cases}}\)

20 tháng 8 2020

bị lỗi mạng nha bạn ơi, phải đặt trường hợp nữa và chỉ chọn x=4

câu b thì cũng làm tương tự

15 tháng 1 2016

gọi 4 số tn liên tiếp là A=a(a+1)(a+2)(a+3)=>A=.....
Đặt a^2+3a+1=t =>A=t^2-1 (dpcm)

21 tháng 7 2016

Ta có

\(\frac{1^2+2^2+...+n^2}{n}=\frac{n\left(n+1\right)\left(2n+1\right)}{6n}=\frac{\left(n+1\right)\left(2n+1\right)}{5n}=\frac{2n^2+1+3n}{5n}\)