Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số nguyên dương x, y, z. Chứng minh rằng:
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)
Với x, y, z nguyên dương
Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)
Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)
\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)
Từ (1) và (2) => dpcm
Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)
Lại có : x,y,z > 0
=> 0 < x/x+y ; y/y+z ; z/z+x < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)
Từ (1) và (2) => ĐPCM
Tk mk nha
Cho 3 số nguyên dương chứ bạn ơi !
Có : x/x+y > 0 => x/x+y > x/x+y+z
Tương tự : y/y+z > y/x+y+z ; z/z+x > z/x+y+z
=> x/x+y + y/y+z + z/z+x > x+y+z/x+y+z = 1
Lại có : x < x+y => x/x+y < 1 => 0 < x/x+y < 1 => x/x+y < x+z/x+y+z
Tương tự : y/y+z < y+x/x+y+z ; z/z+x < z+y/x+y+z
=> x/x+y + y/y+z + z/z+x < x+z+y+x+z+y/x+y+z = 2
=> ĐPCM
Tk mk nha
1 < x /x+y + y /y+x+ z /z+x < 2
=> 1 < (x + y + z) / (2x + 2y + 2z) < 2
=> 1 < ( x + y + z) / 2 x ( x+ y +z) < 2
=> 1 < ( 1 /2 + 2 - 1) < 2
Vậy 1< 1,5 < 2 => 1 < x /x+y + y /y+x+ z /z+x < 2
nhớ tích cho mk nhé!
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}< 2\)
\(=>1< \left(x+y+z\right):2\left(x+y+z\right)< 2\)
\(=>1< \frac{1}{2}+2-1< 2\)
\(=>1< 1,5< 2\)
\(=>1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(x\frac{x}{x+y}\)
Tương tự : \(\frac{y+x}{y+x+z}>\frac{y}{y+z}\)
\(\frac{z+y}{y+z+x}>\frac{z}{z+x}\)
\(\Rightarrow\frac{x+y+y+z+z+x}{x+y+z}>\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrow\frac{2.\left(x+z+y\right)}{x+z+y}>\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrowđpcm\)
ở câu hỏi hay có đó mk nhớ là v bạn vô tìm thử xem nếu k có thì bảo mk
cái câu hỏi mình viết sai đó
nó là như vậy nè:cho x,y,z>0
cm:1<\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{4031}{2015^2.2016^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-.....-\frac{1}{2016^2}=1-\frac{1}{2016^2}\)
\(\frac{1}{2016^2}>0\Rightarrow A< 1\left(ĐPCM\right)\)
bạn chờ xíu mk lm câu sau nha
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}<\frac{x+z}{x+y+z}+\frac{y+x}{x+y+z}+\frac{z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow1<\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}<2\)
\(\RightarrowĐPCM\)