K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

Có 1994 là số chẵn nên nâng lên lũy thừa nào cũng có tận cùng là số chẵn

1999 là số lẻ nên nâng lên lũy thừa nào cũng là số lẻ

Trên là hiệu của 1 số chẵn và 1 số lẻ, kết quả là 1 số lẻ ko chia hết cho 2

 

25 tháng 1 2016

AI XEM QUA KO TÍCH TRÙ CHO CẢ NĂM XUI XẺO, CHÓNG GIÀ

25 tháng 1 2016

trò này xưa rồi PHẠM ĐỨC HUY

6 tháng 5 2015

Bạn chia ra hai trường hợp : n lẻ hoặc chẵn 

Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2

Trường hợp còn lại tương tự , mình chỉ gợi ý thôi bạn tự làm nha .

7 tháng 5 2015

Bạn chia ra hai trường hợp : n là số lẻ hoặc chẵn 

Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2

Trường hợp còn lại tương tự , mình ko chắc lắm nhưng chúc bn giải đc bài còn lại!!

16 tháng 10 2017

kho qua giai gan xong roi 

31 tháng 7 2015

Với n=2k thì (2k+1993^1994)(2k+1994^1993) chia hết cho 2 vì thừa số 2k+1994^1993 có 2k chia hết cho 2, 1994^1993 chia hết cho 2 (Vì 1994 chia hết cho 2)

Với n=2k+1 thì (2k+1993^1994+1)(2k+1+1994^1993) chia hết cho 2 vì thừa số 2k+1993^1994+1 có 1993^1994 lẻ, 1 lẻ nên 1993^1994+1 chẵn => 2k+1993^1994+1 chia hết cho 2.

Từ các điều trên ta có đpcm

16 tháng 10 2018

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.

Vậy  M chia cho 3 dư 2,không là số chính phương.

Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.

Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.

Vậy số N chia cho 4 dư 2,không là số chính phương.

1 tháng 3 2019

31992(32+3-1)=31992*11

 

CMR: 31994 + 31993 - 31992 chia hết cho 11

\(^{3^{1992}}\). ( 9 + 3 - 1 )

\(^{3^{1992}}\). 11

vì 11 chia hết cho 11

nên  \(3^{1992}\).11 chia hết cho 11

Vậy  31994 + 31993 - 31992  chia hết cho 11 ( đpcm)

\(^{3^{1992}}\)

25 tháng 6 2015

Ta có: A=1999+19992+19993+…+19991998

=>       A=(1999+19992)+(19993+19994)+...+(19991997+19991998)

=>       A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)

=>       A=1999.2000+19993.2000+…+19991997.2000

=>       A=(199+19993+…+199919997).2000

=>       A chia hết cho 2000

=>ĐPCM

l-i-k-e cho mình nha bạn

1 tháng 10 2016

   Ta có: A = (1999+19992+19993+...+19991998) chia hết cho 2000

                = (1999+19992)+(19993+19994)+...+(19991997+19991998)

                = 1999.(1999+1)+19993.(1999+1)+...+19991997.(1999+1)

                = 1999.2000+19993.2000+...+19991997.2000

                = 2000.(1999+19993+...+19991997)

              => Vậy, ta đã chứng minh được A chia hết cho 2000