K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2023

Lời giải:
Nếu $n$ chia hết cho $3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $A=10^n+18n-1=10^{3k}+18.3k-1=1000^k+54k-1$

Có:
$1000\equiv 1\pmod {27}\Rightarrow 1000^k\equiv 1^k\equiv 1\pmod {27}$

$54k\equiv 0\pmod {27}$

$\Rightarrow 1000^k+54k-1\equiv 1+0-1\equiv 0\pmod {27}$

Hay $A\equiv 0\pmod {27}(1)$

Nếu $n$ chia $3$ dư $1$. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó:

$A=10^{3k+1}+18(3k+1)-1=1000^k.10+54k+17$

$\equiv 1^k.10+0+17=27\equiv 0\pmod {27}(2)$

Nếu $n$ chia $3$ dư $2$. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó:

$A=10^{3k+2}+18(3k+2)-1=1000^k.100+54k+35$

$\equiv 1^k.100+0+35=135\equiv 0\pmod {27}(3)$
Từ $(1); (2); (3)\Rightarrow A\vdots 27$ với mọi $n$ tự nhiên.

22 tháng 11 2023

Em cảm ơn thầy/cô nhiều ạ .

17 tháng 12 2021
S có chia hết cho 3 bạn nhé
3 tháng 3 2022

Thế S là số nào bn mà chia hết cho 3 vậy bn ?

10 tháng 4 2018

a,B=(10n-1)+(27n-9n)

B=999..9+27n - 9n (n chữ số 9)

B=9.(111..1-n)+27n (n chữ số 1)

Vì 111..1(n chữ số 1) và n cùng dư trong phép chia cho 3

=>111..1-1 (n chữ số 1) ⋮ 3

=>9.(111..1-n) ⋮ 9 . 3 =27

mà 27 n ⋮ 27

=> 9.(111..11 - n)+27n ⋮ 27

=>B ⋮ 27

29 tháng 4 2018

là đồng dư nhỉ

10 tháng 11 2017

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

19 tháng 10 2017

Xin lỗi nha đề sai :

đề đúng đây :

Chứng minh 10n+18n - 1 chia hết cho 27 ( với n là số tự nhiên )

25 tháng 10 2020

Ta có: \(10^n+18n-1\)

\(=\left(10^n-1\right)+18n\)

\(=\left(100...0-1\right)+18n\) (n số 0)

\(=99...9+18n\) (n số 9)

\(=9\cdot\left(11...1+2n\right)\) (n chữ số 1)

Xét tổng các chữ số của 11...1 có n số 1

=> Tổng các chữ số của nó là: 1+1+...+1 = n

=> \(11...1+2n\) chia hết cho 3

=> \(9\cdot\left(11...1+2n\right)\) chia hết cho 27

=> đpcm

29 tháng 10 2018

Bài 1:

a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)

suy ra 10n-1 chia hết cho 9

b) Vì 10n luôn luôn có cs tận cùng là 0

ta có 10n sẽ có tổng các cs của nó là 1

Vậy 10n+8 sẽ có tổng các cs là 9

Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.

17 tháng 2 2016

10n+18n-1

=10n-1-9n+27n

=99..9-9n+27n=9(11..1-n)+27n

  n số 9               n số 1

vì 11...1(n số 1) có tổng các chữ số =n =>11..1-n chia hết cho 3

                                                              n số 1

=>9(11...1-n) chia hết cho 27 10n+18n-1 chia hết cho 27(đpcm)

       n số 1  

17 tháng 2 2016

mih đồng ý với Hoàng Phúc

17 tháng 10 2015

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

4 tháng 12 2021

còn cái nịt

còn đúng cái nịt thôi nha naruto