K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

ooooooooooooooooo

DD
23 tháng 2 2021

\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)

\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)

\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).

26 tháng 8 2018

Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

\(\Rightarrow x=k\)

     \(y=2k\)

     \(z=3k\)

Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)

\(=6k.\frac{6}{k}\)

\(=\frac{36k}{k}=36\)

=.= hok tốt!!

26 tháng 8 2018

Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

Do đó  \(x=k;y=2k;z=3k\)

Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có 

\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)

\(=6k.\frac{6+12+18}{6k}\)

\(=\frac{6k.\left(6+12+18\right)}{6k}\)

\(=36\)

Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)

Ta có : 

      x - y - z = 0

=> 

                   x = y + z       ;      y = x - z       ;      z = x - y

Có : 

   \(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)

  \(B=\left(\frac{x-z}{x}\right).\left(\frac{y-x}{y}\right).\left(\frac{z+y}{z}\right)\)

Thay các biểu thức trong khung trên và B ta có :

 \(B=\frac{y}{x}.\frac{y-\left(y+z\right)}{y}.\frac{x}{z}\)

=> \(B=\frac{y}{x}.\frac{y-y-z}{y}.\frac{x}{z}=\frac{y.\left(-z\right).x}{x.y.z}=-1\)

Vậy B = -1

nha !!!

10 tháng 6 2018

Ta có: \(x-y-z=0\Rightarrow\hept{\begin{cases}x=z+y\\y=x-z\\-z=y-x\end{cases}}\)

\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)

\(\Rightarrow B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(\Rightarrow B=\frac{y.\left(-z\right).x}{x.y.z}=-1\)

Vậy giá trị của biểu thức \(B=-1.\)