Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).
Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow x=k\)
\(y=2k\)
\(z=3k\)
Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)
\(=6k.\frac{6}{k}\)
\(=\frac{36k}{k}=36\)
=.= hok tốt!!
Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)
Do đó \(x=k;y=2k;z=3k\)
Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có
\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)
\(=6k.\frac{6+12+18}{6k}\)
\(=\frac{6k.\left(6+12+18\right)}{6k}\)
\(=36\)
Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)
Ta có :
x - y - z = 0
=>
x = y + z ; y = x - z ; z = x - y |
Có :
\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(B=\left(\frac{x-z}{x}\right).\left(\frac{y-x}{y}\right).\left(\frac{z+y}{z}\right)\)
Thay các biểu thức trong khung trên và B ta có :
\(B=\frac{y}{x}.\frac{y-\left(y+z\right)}{y}.\frac{x}{z}\)
=> \(B=\frac{y}{x}.\frac{y-y-z}{y}.\frac{x}{z}=\frac{y.\left(-z\right).x}{x.y.z}=-1\)
Vậy B = -1
nha !!!
Ta có: \(x-y-z=0\Rightarrow\hept{\begin{cases}x=z+y\\y=x-z\\-z=y-x\end{cases}}\)
\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(\Rightarrow B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)
\(\Rightarrow B=\frac{y.\left(-z\right).x}{x.y.z}=-1\)
Vậy giá trị của biểu thức \(B=-1.\)