Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Đặt \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\)là A
Nhân 2 vế A cho \(\sqrt{x^2+5}-x\)ta được:
\(5.\left(y+\sqrt{y^2+5}\right)=5.\left(\sqrt{x^2+5}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+5}=\sqrt{x^2+5}-x\)
\(\Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)
Nhân 2 vế A cho \(\sqrt{y^2+5}-y\) ta được:
\(5.\left(x+\sqrt{x^2+5}\right)=5.\left(\sqrt{y^2+5}-y\right)\)
\(\Leftrightarrow x+\sqrt{x^2+5}=\sqrt{y^2+5}-y\)
\(\Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)
từ (1) và (2) suy ra:
\(x+y-\left(x+y\right)=\sqrt{x^2+5}-\sqrt{y^2+5}-\left(\sqrt{y^2+5}-\sqrt{x^2+5}\right)\)
\(\Leftrightarrow2\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}=0\)
\(\Rightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}=0\)
\(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\)
Ta có: \(\hept{\begin{cases}\left(\sqrt{x^2+5}+x\right)\left(\sqrt{x^2+5}-x\right)=5\\\left(\sqrt{y^2+5}+y\right)\left(\sqrt{y^2+5}-y\right)=5\end{cases}}\)
Kết hợp với giải thiết ta được: \(\hept{\begin{cases}\sqrt{x^2+5}-x=\sqrt{y^2+5}+y\\\sqrt{y^2+5}-y=\sqrt{x^2+5}+x\end{cases}}\)
Cộng theo vế ta được: \(-\left(x+y\right)=x+y\)
\(\Rightarrow\)\(x+y=0\)
\(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\)
⇔ \(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{x^2+5}-x\right)\left(\sqrt{y^2+5}+y\right)=5\left(\sqrt{x^2+5}-x\right)\) ⇔ \(5\left(\sqrt{y^2+5}+y\right)=5\left(\sqrt{x^2+5}-x\right)\)
⇔ \(x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)
Tương tự : \(x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)
Cộng từng vế của ( 1 ; 2 ) , ta có : x + y = 0