K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

TH1:x+y+z=0

=>\(\left\{\begin{matrix}y+z=-x\\x+z=-y\\x+y=-z\end{matrix}\right.\)

=>\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x}{-x}=\frac{y}{-y}=\frac{z}{-z}=-1\)

TH2: x+y+z\(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{1}{2}\)

Vậy\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}=\frac{1}{2}\) hoặc \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=-1\)

2 tháng 1 2017

Giải:
+) Xét \(x+y+z=0\)

\(\Rightarrow y+z=-x\)

\(\Rightarrow x+z=-y\)

\(\Rightarrow x+y=-z\)

Ta có: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}\)

\(=\frac{x}{-x}=\frac{y}{-y}=\frac{z}{-z}=-1\)

+) Xét \(x+y+z\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2x+2y+2z}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

Vậy \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=-1\) hoặc \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{1}{2}\)

25 tháng 12 2016

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y+y+z+z+x}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Ta có: \(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=2.2.2=2^3=8\)

Vậy P = 8

3 tháng 1 2017

\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

3 tháng 1 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z}\) = \(\frac{y}{x+z}\) = \(\frac{z}{x+y}\) = \(\frac{x+y+z}{y+z+x+z+x+y}\)

= \(\frac{x+y+z}{2\left(x+y+z\right)}\) = \(\frac{1}{2}\).

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

30 tháng 12 2017

Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)

=> Biểu thức = -1-1-1-1 = -4

Nếu x+y+z+t khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3

=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)

=> x=y=z=t

=> A = 1+1+1+1 = 1

Vậy ...........

k mk nha

30 tháng 12 2017

có ghi ngược đề không vậy ạ? :>

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}\) (1)

Xét 1 trường hợp:

  • TH1: x + y + z = 0 \(\Rightarrow\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\)

Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

  • TH2: \(x+y+z\ne0\)

Từ (1) \(\Rightarrow\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\)\(\Rightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2^3=8\)

 

5 tháng 1 2018

ta có\(\frac{y+z-x}{x}\) =

5 tháng 1 2018

ta có y+z-x/x=z+x-y/y=x+y-z/z=y+z-x+z+x-y+x+y-z/x+y+z=(2y-y)+(2x-x)+(2z-z)/x+y+z=y+x+z/x+y+z=1

=>y+z-x/x=1                          =>z+x-y/y=1

    z+x-y/y=1                             x+y-z/z=1

=> y+z-x=x                         => z+x-y=y

    z+x-y=y                               x+y-z=z

=>2y-2x=x-y                            =>2z-2y=y-z

  3y-3x=0                               3z-3y=0

  y-x=0                                      z-y=0

=>x=y                                 =>z=y

            =>x=y=z

=> y+z-x/x+z+x-y/y+x+y-z/z= 0,(3)+0,(3)+0,(3)=1

=>x +y+z=0,(3)+0,(3)+0,(3)=1

thay vào b=(1+x/y). (1+y/z). (1+z/x)

            b=(1+0,(3)/0,(3)).(1+0,(3)/0,(3)).(1+0,(3)/0,(3))

               b=(1+1).(1+1).(1+1)

            b=2.2.2

            b=2^3

            b=8 

CÂU TRẢ LỜI TRƯỚC MK BẤM NHẦM