K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

Vì \(a,b,c\ne0\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

1 tháng 8 2020

Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

Nếu a + b + c = 0

=> a + b = - c

=> b + c = - a

=> a + c = - b

Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne0\)

=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)

=> b + c = a + c = a + b

=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)

Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

=> P = 6

Vậy khi a + b + c = 0 => P = -3

khi a + b + c  \(\ne0\) => P = 6

14 tháng 10 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)

\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)

14 tháng 10 2018

a/b=b/c=c/a

Áp dụng t/c dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/b+c+a=1 

suy ra a/b =b/c=c/a=1 suy ra a=b=c 

suy ra M =1

20 tháng 2 2019

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)

=> \(\frac{a}{b}=1\)=> a = b

    \(\frac{b}{c}=1\) => b = c      

  \(\frac{c}{d}=1\) => c = d                              

\(\frac{d}{a}=1\) => d = a

=> a = b = c = d

Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)

hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)

\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(\frac{1}{2}.4=2\)

30 tháng 11 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)

TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)

\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)

xét a+b+c khác 0

=> a=b=c

=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)

Vậy B=-1 hay B=8

p/s: bài này gây khá nhiều tranh cãi :> 

1 tháng 8 2018

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=\frac{b+c-a}{4+11-3}=\frac{b+c-a}{12}=\frac{a+c-b}{3+11-4}=\frac{a+c-b}{10}\)

\(\Rightarrow\frac{b+c-a}{a+c-b}=\frac{12}{10}=\frac{6}{5}\)

2 tháng 8 2018

mk làm kiểu khác

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=k\)

\(\Rightarrow a=3k;b=4k;c=11k\)(1)

Thay (1) vào biểu thức A ta được:

\(\frac{4k+11k-3k}{3k+11k-4k}=\frac{12k}{10k}=\frac{6}{5}\)

Vậy..................

14 tháng 9 2019

b)Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

14 tháng 9 2019

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2+1\right)\left(a^2-1\right)\)

\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)

Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

24 tháng 12 2015

Câu Hỏi Tương Tự của Trương Diệu Ngọc nha !

MERRY CHRISMAS !Đoàn Văn Nam