K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

xem lại đề đi

5 tháng 12 2017

ta có:\(\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{a+d+a-b}{b}=\dfrac{d+a+b-c}{c}\)\(=>\dfrac{a+b+c-d}{d}+2=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2\)\(=>\dfrac{a+b+c+d}{d}=\dfrac{b+c+d+a}{a}=\dfrac{c+d+a+b}{b}=\dfrac{d+a+b+c}{c}\)Nếu a+b+c+d=0=>a+b=-(c+d)

b+c=-(a+d)

c+d=-(a+b)

a+d=-(b+c)

thay vào bt M ta có:\(\dfrac{-\left(c+d\right)}{c+d}=\dfrac{-\left(d+a\right)}{d+a}=\dfrac{-\left(a+b\right)}{a+b}=\dfrac{-\left(b+c\right)}{b+c}\)=>-1-1-1-1=-4

Nếu a+b+c+d≠0

=>a=b=c=d thì lúc đó M=1+1+1+1=4

Vậy M=4 hoặc M=-4

14 tháng 7 2015

trừ mỗi tỉ lệ cho 1 ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{2a+b+c+d}{a}-\frac{a}{a}=\frac{a+2b+c+d}{b}-\frac{b}{b}=\frac{a+b+2c+d}{c}-\frac{c}{c}=\frac{a+b+c+2d}{d}-\frac{d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+Nếu a+b+c+d\(\ne\)0 thì a=b=c=d lúc đó 

M=1+1+1+1=4

+Nếu a+b+c+d=0 thì a+b=-(c+d);b+c=-(d+a);c+d=-(a+b);d+a=-(b+c) lúc đó:

M=(-1)+(-1)+(-1)+(-1)=-4

\(\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{a+b+2c+d+a+b+c+2d}{c+d}=\frac{2a+2b+3c+3d}{c+d}\)

\(=\frac{2\left(a+b\right)}{c+d}+\frac{3\left(c+d\right)}{c+d}=2.\frac{a+b}{c+d}+3\)

\(\frac{2a+b+c+d}{a}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+b+c+2d}{a+d}=\frac{3a+3d+2c+2b}{a+d}\)

\(=\frac{3\left(a+d\right)}{a+d}+\frac{2\left(b+c\right)}{a+d}=3+2.\frac{b+c}{a+d}\)

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{2a+b+c+d+a+2b+c+d}{a+b}=\frac{3a+3b+2c+2d}{a+b}\)

\(=\frac{3\left(a+b\right)}{a+b}+\frac{2\left(c+d\right)}{a+b}=3+\frac{c+d}{a+b}.2\)

\(\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+2b+c+d+a+b+2c+d}{b+c}=\frac{3b+3c+2a+2d}{b+c}\)

\(=\frac{3\left(b+c\right)}{b+c}+\frac{2\left(a+d\right)}{b+c}=3+\frac{a+d}{b+c}.2\)

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

\(\Rightarrow\frac{2a+b+c+d}{a}+\frac{a+2b+c+d}{b}+\frac{a+b+2c+d}{c}+\frac{a+b+c+2d}{d}=5.4=20\)

\(\Rightarrow3+\frac{a+b}{c+d}.2+3+\frac{b+c}{a+d}.2+3+\frac{c+d}{a+b}.2+3+\frac{d+a}{b+c}.2=20\)

\(\Rightarrow2.\left(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\right)=20-3-3-3-3\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=8:2=4\)

vậy \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=4\)

 

Mình thử nha :33

Ta có : \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)

\(\Leftrightarrow\left(a+b+c+d\right)\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\cdot2000=50\) ( do \(a+b+c+d=2000\) )

\(\Rightarrow1+\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1+\frac{a}{b+c+d}=50\)

\(\Rightarrow S=50-4=46\)

Vậy : \(S=46\) với a,b,c,d thỏa mãn đề.

27 tháng 1 2022

địt mẹ mày

13 tháng 8 2020

Cùng trừ mỗi tỉ số trên đi 1 đơn vị ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2a+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Suy ra 2 trường hợp:

TH1:

Nếu a+b+c+d ∉ 0 ⇒ a = b = c = d

➜ P= 1+1+1+1 = 4

TH2:

Nếu a+b+c+d =0

⇒ a+b = -(c+d)

b+c = -(d+a)

⇒ c+d = -(a+b)

d+a = -(b+c)

➜ P= (-1) + (-1) + (-1) + (-1) = -4

13 tháng 2 2018

Cộng thêm 1 vào mỗi đẳng thức, ta được:

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì các tử số của mỗi tỉ số bằng nhau nên các mẫu số của mỗi tỉ số cũng bằng nhau

\(\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}=1+1+1+1=4\)

24 tháng 9 2016

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\)\(\frac{d}{a+b+c}\)

\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Mà: \(a+b+c+d\ne0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow A=1+1+1+1=4\)

24 tháng 9 2016

số đo slaf

nhe sbn

bài dài 

lắm mình

vhir tiện ghi

thế này thôi