Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABH và ΔCAH có:
\(\widehat{AHB}=\widehat{CHA}=90\left(gt\right)\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ với \(\widehat{BAH}\) )
=>ΔABH=ΔCAH (g.g)
=>\(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
=>\(\frac{20}{21}=\frac{420}{HC}=\frac{BH}{420}\)
=>\(HC=\frac{420\cdot21}{20}=441\)
\(BH=\frac{420\cdot20}{21}=400\)
=> BC=HC+HB=441+400=841
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(AB^2=BH\cdot BC=400\cdot841=336400\Rightarrow AB=580\)
\(AC^2=HC\cdot BC=441\cdot841=370881\Rightarrow AC=609\)
Vậy chu vi của ΔABC là: AB+AC+BC=580+609+841=2030
Bảo Duy Cute ns đúq ak Ngô Hoài Thanh hình như thíu đề hay s ak
Gọi x = AB và y = AC
Ta có :
x/BD = y/DC ( Công thức tỉ số với đường phân giác)
<=> x/7,5 = y/10
<=> 10x = 7,5y => x = 0,75y
Ta lại có : x2 + y2 = 17.52
<=> 0,5625y2 + y2 = 17.52
<=> 1,5625y2 = 17.52
<=> y2 = 196
<=> y = 14 ( loại -14 < 0 )
=> x = 0,75 x 14 = 10,5
Ta lại có :
AB x AC = AH x BC ( công thức trong tam giác vuông )
<=> 10,5 x 14 = AH x 17.5
<=> AH = 10,5 x 14 / 17.5 = 8,4 cm
AB/AC = 20/21 => Đặt AB/20 = AC / 21 = x
=> AB = 20x ; AC= 21x
Tam giác ABC vuông tại A , theo PY TA GO :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(20x\right)^2+\left(21x\right)^2}=\sqrt{400x^2+441x^2}=\sqrt{881x^2}=29x\)
Tam giác ABC vuông tại A, theo HTL :
AH = \(\frac{AB.AC}{BC}=\frac{20x.21x}{29x}=\frac{140}{3}x\)
=> 420 = 140/3 * x => x = 9
=> AB = 20 . 9 = 180
=> AC = 21.9 = 189
=> BC = 29 . 9 =261
=> Cabc = 180 + 189 + 261= 630
Ta có:\(sin\widehat{BAH}\)=\(\frac{2}{3}\)\(\Rightarrow sin\widehat{BAH}\)\(\approx sin42^o\)
\(\Rightarrow\widehat{BAH}\)=\(42^o\)
Vì AH là đường cao => \(AH\perp BC=\left\{H\right\}\)
\(\Rightarrow\widehat{AHB}\)=\(\widehat{AHC}\)=\(90^O\)
Xét tam giác AHB vuông tại H:
\(\widehat{BAH}\)+\(\widehat{B}\)=\(90^O\)\(\Rightarrow\widehat{B}\)=\(48^O\)
Xét tam giác ABC vuông tại A, đường cao AH:
+) \(sin\widehat{B}\)=\(\frac{AC}{BC}\)\(\Leftrightarrow sin48^o=\frac{3}{BC}\)
\(\Rightarrow BC=4\left(cm\right)\)
+) \(BC^2=AB^2+AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}\)
\(\Rightarrow AB\approx2,6\left(cm\right)\)
+) \(AH.BC=AB.AC\)(hệ thức giữa cạnh và đường cao)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH\approx2\left(cm\right)\)
\(S\)ABC =\(\frac{AH.BC}{2}\)= \(4\left(cm^2\right)\)
*Mình sợ sẽ có sai sót nên bạn kiểm tra lại nhé
~HỌC TỐT~
học tốt .......................