Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)
\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)
Ta lại có:
\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)
Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)
( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0
vậy ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\ge\) 0
mà ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\le\)0
suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0
do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)
Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn
\(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\); \(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ; \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)
\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)
Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)
\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)
\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)
Ta có:
f ( 1 ) = \(a_0+a_1+....+a_{2017}\)
mà f ( x) = \(\left(x+2\right)^{2017}\)
=> \(S=f\left(1\right)=3^{2017}\)
\(x^2_2=x_1.x_3\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2},x^2_3=x_2.x_4\Rightarrow\frac{x_4}{x_3}=\frac{x_3}{x_2}\)\(\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}=\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\Rightarrow\left(\frac{x_2}{x_1}\cdot\frac{x_3}{x_2}\cdot\frac{x_4}{x_3}\right)=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\Rightarrow\frac{x_4}{x_1}=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\)
\(\Rightarrow\frac{x_1}{x_4}=\left(\frac{x_1+x_2+x_3}{x_2+x_3+x_4}\right)^3\left(đpcm\right)\)
Từ \(X_2^2=X_1.X_3\)\(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}\)(1)
Từ \(X_3^2=X_2.X_4\)\(\Rightarrow\frac{X_2}{X_3}=\frac{X_3}{X_4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}=\frac{X_3}{X_4}=\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\)
\(\Rightarrow\left(\frac{X_1}{X_2}\right)^3=\left(\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\right)^3\)(1)
Từ \(\left(\frac{X_1}{X_2}\right)^3=\frac{X_1}{X_2}.\frac{X_1}{X_2}.\frac{X_1}{X_2}=\frac{X_1}{X_2}.\frac{X_2}{X_3}.\frac{X_3}{X_4}=\frac{X_1}{X_4}\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
dễ vcl :)))
( 2017x1 - 2016y2 )2 + ( 2017x2 - 2016y2 )2 + ... + ( 2017x2016 - 2016x2016)2
Chẳng có quy luật gì cả :)))
Hình như sai đề
----