Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
suy ra 1-n là Ư(1)={-1;1}
ta có bảng giá trị
1-n | -1 | 1 |
n | 2 | 0 |
Đối chiếu điều kiện n thuộc Z
Vậy n={2,0}
Chứng minh đẳng thức sau với a,b,c thuộc Z:
a(b-c)-a(b+d)=-a(c+d)
\(ab-ac-ab+ad=-a\left(c+d\right)\)
\(a.\left(b-c-b+d\right)=-a\left(c+d\right)\)
\(-a.\left(c+d\right)\)= VP
\(\Rightarrowđpcm\)
chúc bạn học tốt
Ta có : n2 - 9n + 7 = n.n - 9n + 7 = n ( n - 9 ) + 7
Để n2 - 9n + 7 \(⋮\)n - 9
=> n ( n - 9 ) + 7 \(⋮\)n - 9
=> 7 \(⋮\)n - 9
=> n - 9 \(\in\)Ư( 7 ) = ( 1 ; 7 )
=> n \(\in\)( 10 ; 16 )
~ HỌC TỐT ~
để n-10/n-4 thuộc Z =) n-10 chia hết cho n-4
hay n-4-6 chia hết cho n-4
mà n-4 chia hết cho n-4 nên 6 chia hết cho n-4
=) n-4 thuộc Ư(6)={+-1; +-2;+- 3; +-6} (n là số tự nhiên mà n-4 có thể thuộc Z)
=)n={3;5;6;2;7;1;10}
\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)
Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)
\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)
\(=\left|4-2x\right|+y^2-5\)
Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)
\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )
\(-3\in Z\\ 0\in Z\\ 4\in Z\\ -2\notin N\)
a) \(\in\)
b) \(\in\)
c) \(\in\)
d) \(\notin\)