Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD có :
M là trung điểm của AB
F là trung điểm của BD
=) MF là đường trung bình của tam giác ABD
=) MF//AD và MF=\(\frac{1}{2}\)AD (1)
Xét tam giác tam giác ACD có :
N là trung điểm CD
E là trung điểm AC
=) NE là đường trung bình của tam giác ACD
=) NE//AD và NE=\(\frac{1}{2}\)AD (2)
Từ (1) và (2) =) Tứ giác MENF là hình bình hành
a) Vì ABCD là hình thang
=> BAD + ADC = 180° ( trong cùng phía )
=> BAD = 180° - 60° = 120°
Vì DB là phân giác ADC
=> ADB = CDB = \(\frac{120°}{2}=60°\)
Vì AB//CD ( ABCD là hình thang )
=> ABD = BDC = 60° ( so le trong )
Mà ABD + DBC = 120°
=> DBC = 120° - 60° = 60°
b) Vì ABCD là hình thang cân
=> BAD = ABC = 120°
ADC = BCD = 60°
=> ADB = ABD = 60°
=> ∆ADB cân tại A
=> AD = AB = x
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AMCN là hình bình hành
nên AC cắt MN tại trung điểm của mỗi đường
=>M đối xứng N qua O
a, xét tam giac ADC và tam giác BDC có :
AC=BD
góc ACD =BDC
Cạnh CD chung
a) Xét \(\Delta\)ADE và \(\Delta\)BCF :
AED^ = BFC^ =90o
AD = BC
ADE^ = BCF^
=> \(\Delta\)ADE = \(\Delta\)BCF (cạnh huyền_góc nhọn)
=> DE = CF (2 cạnh tương ứng)
b) Xét \(\Delta\)DAB và \(\Delta\)CBA:
AD= BC
DAB^ = CBA^
AB chung
=> \(\Delta\)DAB = \(\Delta\)CBA (c.g.c)
=> ADB^ =BCA^ (2 góc tương ứng)
Ta có: ADC^ = ADB^ + BDC^ => BDC^ = ADC^ - ADB^
BCD^ = BCA^ + ACD^ => ACD^ = BCD^ - BCA^
mà ADC^ = BCD^ và ADB^ = BCA^ (cmt)
=> BDC^ = ACD^
=> \(\Delta\)DIC cân tại I
=> ID = IC
Xét \(\Delta\)AID và \(\Delta\)BIC:
AD = BC
ADI^ = BCI^ (cmt)
ID = IC (cmt)
=> \(\Delta\)AID = \(\Delta\)BIC (c.g.c)
=> IA = IB (2 cạnh tương ứng)
c)
d)
---ko làm nữa đâu--- +.+
a)Vì ABCD là hình thang =>BAD=ABC
AB//CD =>BAD +ADC=180°
Mà ADC=60°=>BAD =ABC=120°
b) vì ABCD là hình thang =>ADC=BCD=60°
Ta có AD =DE =1/2CD =>∆ADE cân tại D
Mà ADE =60° =>∆ADE đều
= > AED =60°=>AED =BCD=60°
=> AE//BC
Xét ABCD có AE//BC; AB//CE
=>ABCD là hbh
a: AB//CD
=>\(\widehat{DAB}+\widehat{ADC}=180^0\)
mà \(\widehat{DAB}-\widehat{ADC}=60^0\)
nên \(\widehat{ADC}=\dfrac{180^0-60^0}{2}=60^0\)
b: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>OC=OD
OA+OC=AC
OB+OD=BD
mà OA=OB và OC=OD
nên AC=BD
=>ABCD chỉ là hình thang cân thôi chứ không là hình bình hành nha bạn