K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

a: AB//CD
=>\(\widehat{DAB}+\widehat{ADC}=180^0\)

mà \(\widehat{DAB}-\widehat{ADC}=60^0\)

nên \(\widehat{ADC}=\dfrac{180^0-60^0}{2}=60^0\)

b: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>OC=OD

OA+OC=AC

OB+OD=BD

mà OA=OB và OC=OD

nên AC=BD

=>ABCD chỉ là hình thang cân thôi chứ không là hình bình hành nha bạn

9 tháng 1 2019

tau méch cô hoài nhá

9 tháng 1 2019

a) Xét tam giác ABD có :

 M là trung điểm của AB

 F là trung điểm của BD

=) MF là đường trung bình của tam giác ABD

=) MF//AD và MF=\(\frac{1}{2}\)AD    (1)

Xét tam giác tam giác ACD có :

 N là trung điểm CD

 E là trung điểm AC

=) NE là đường trung bình của tam giác ACD

=) NE//AD và NE=\(\frac{1}{2}\)AD     (2)

Từ (1) và (2) =) Tứ giác MENF là hình bình hành

a) Vì ABCD là hình thang

=> BAD + ADC = 180° ( trong cùng phía )

=> BAD = 180° - 60° = 120° 

Vì DB là phân giác ADC 

=> ADB = CDB = \(\frac{120°}{2}=60°\)

Vì AB//CD ( ABCD là hình thang )

=> ABD = BDC = 60° ( so le trong )

Mà ABD + DBC = 120° 

=> DBC = 120° - 60° = 60° 

b) Vì ABCD là hình thang cân 

=> BAD = ABC = 120° 

ADC = BCD = 60° 

=> ADB = ABD = 60°

=> ∆ADB cân tại A

=> AD = AB = x

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O

29 tháng 6 2017

a, xét tam giac ADC và tam giác BDC có :

AC=BD 

góc ACD =BDC

Cạnh CD chung

15 tháng 7 2016

a) Xét \(\Delta\)ADE và \(\Delta\)BCF :

AED^ = BFC^ =90o

AD = BC

ADE^ = BCF^ 

=> \(\Delta\)ADE = \(\Delta\)BCF (cạnh huyền_góc nhọn)

=> DE = CF (2 cạnh tương ứng)

b) Xét \(\Delta\)DAB và \(\Delta\)CBA:

AD= BC

DAB^ = CBA^ 

AB chung

=> \(\Delta\)DAB = \(\Delta\)CBA (c.g.c)

=> ADB^ =BCA^ (2 góc tương ứng)

Ta có: ADC^ = ADB^ + BDC^ => BDC^ = ADC^ - ADB^ 

         BCD^ = BCA^ + ACD^ => ACD^ = BCD^ - BCA^ 

mà ADC^ = BCD^ và ADB^ = BCA^ (cmt)

=> BDC^ = ACD^

=> \(\Delta\)DIC cân tại I 

=> ID = IC

Xét \(\Delta\)AID và \(\Delta\)BIC:

AD = BC

ADI^ = BCI^ (cmt)

ID = IC (cmt)

=> \(\Delta\)AID = \(\Delta\)BIC (c.g.c)

=> IA = IB (2 cạnh tương ứng)

c) 

d)

---ko làm nữa đâu--- +.+

28 tháng 12 2016

a)Vì ABCD là hình thang =>BAD=ABC

AB//CD =>BAD +ADC=180°

Mà ADC=60°=>BAD =ABC=120°

b) vì ABCD là hình thang =>ADC=BCD=60°

Ta có AD =DE =1/2CD =>∆ADE cân tại D

Mà ADE =60° =>∆ADE đều

= > AED =60°=>AED =BCD=60°

=> AE//BC

Xét ABCD có AE//BC; AB//CE

=>ABCD là hbh

28 tháng 12 2016

Bạn ơi!mk cảm ơn!bạn có thể giúp mình luôn câu c đc ko ạ?