K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔACD vuông tại C có

AB=AC

AD chung

Do đó: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)

Do đó: ΔAED=ΔAFD

=>AE=AF

=>ΔAEF cân tại A

 

a: Ta có: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

hay DB=DC

c: Xét ΔKDC có \(\widehat{KDC}=\widehat{KCD}\left(=\widehat{B}\right)\)

nên ΔKDC cân tại K

16 tháng 3 2022

Còn câu b nữa bạn 🙂

6 tháng 4 2018

ta có : BC2 = 102 = 100

          AC2 +AB2 =62 + 82 =36 +64 = 100

       BC2 =AC2 + AB2

suy ra tam giác ABC vuông tại A ( định lý pytago đảo )

31 tháng 7 2019
Mọi người trả lời giùm minh đi minh đang có viêc gâp
1 tháng 8 2019

A B C D E F

a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)

b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2

Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:

\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)

\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)

Theo đề bài ta có AB = AC = 10 < BC = 12

Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)

c) Hướng dẫn:

\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)

Suy ra EB = FC. Từ đó suy ra AE = AF. 

Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)

Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra đpcm

17 tháng 2 2019

Ta có :

\(BC^2=4^2=16\)(1)

\(AC^2-AC^2=5^2-3^2=25-9=16\)(2)

Áp dụng định lý Pytago đảo vào (1) và (2) 

=> Tam giác ABC vuông tại B (đpcm)

7 tháng 4 2019

Ta có : 

\(BC^2=4^2=16\left(1\right)\)

\(AC^2-AC^2=5^2-3^2=25-9=16\left(2\right)\)

Áp dụng định lý Pitago đảo vào ( 1 ) và ( 2 )

=> Tam giác ABC vuông tại B ( đpcm )