Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá
a, Ta có : BH = HC = BC : 2
=> BH = HC = 8 : 2
=> BH = HC = 4 ( cm )
=> BH = HC
b, - Xét tam giác AHB vuông tại H có :
AC2 = AH2 + HC2
=> 52 = AH2 + 42
=> 25 = AH2 + 16
=> AH2 = 25 + 16
=> AH2 = 41
=> AH = 20,5 ( cm )
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
A B C H 10cm 12cm
Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)( \(\Delta ABC\)cân tại A )
AH là cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch.gn\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
b) Vì \(HB=HC\left(cmt\right)\)
\(\Rightarrow HB=HC=\frac{12}{2}=6cm\)
Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\) có:
\(AC^2=AH^2+CH^2\)( định lý py-ta-go )
\(\Rightarrow10^2=AH^2+6^2\)
\(\Rightarrow AH^2=10^2-6^2\)
\(\Rightarrow AH^2=64\)
\(\Rightarrow AH=\sqrt{64}\)
\(\Rightarrow AH=8cm\)
Vậy \(AH=8cm\)
a) Ta xét ▵AHB và▵AHC, ta có
AH là cạnh chung
AC=AB ( vì tam giác cân tại A)
góc AHC = góc AHB là góc vuông (90 độ)
-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)
b) Ta có ▵AHB =▵AHC (cmt)
->HB=HC ( 2 cạnh tương ứng)
c) Ta xét ▵AKH và ▵AIH. Ta có:
AH là cạnh chung
góc AKH = góc AIK = 90 độ
-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)
-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A
d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
Ta có AH là cạnh chung cùng vuông góc với IK và BC
-> IK // BC
e) Ta cho giao điểm của AH và IK là O
Ta xét ▵AKO và ▵AIO
Ta có AK=AI (cmt)
Góc AOK = góc AOI = 90 độ
-> ▵AKO = ▵AIO
-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK