Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)để A là số nguyên thì \(6n+9⋮3n+2\Rightarrow2\left(3n+2\right)+5⋮3n+2\)
vì 2(3n+2)\(⋮\)3n+2 nên 5 phải chia hết cho 3n+2
\(\Rightarrow n\in\left\{1;-1\right\}\)
b) để A bé nhất thì tử phải nhỏ nhất và mẫu lớn nhất mà A =\(1+\frac{5}{3n+2}\) nên \(\frac{5}{3n+2}\)phải nhỏ nhất thì n=-1
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
Để A là số nguyên thì :
3n-5 \(⋮\) n + 4
\(\Rightarrow\) 3n+12 - 17 \(⋮\) n + 4
\(\Rightarrow\) 3.( n + 4 ) - 17 \(⋮\) n + 4
\(\Rightarrow\) 17 \(⋮\) n + 4
Suy ra : n+4 là Ư(17) = -17 ; -1 ; 1 ; 17
Vậy n= -21 ; -5 ; -3 ; 13
Vậy n
☁☁🎇🎆🎇☁☁
☁🎆⭐✨⭐🎆☁
🎇⭐🎇🌟🎇⭐🎇
🎆✨🌟🌕🌟✨🎆
🎇⭐🎇🌟🎇⭐🎇
☁🎆⭐✨⭐🎆☁
☁☁🎇🎆🎇☁☁
Happy new year!!!
Câu này giống cô Oanh cho lớp tau nè
a) Để ... Là phân số thì n thuộc Z và n khác 1
b) Để .. thuộc Z thù 4 chia hết cho n trừ 1
Suy ra n -1 thuộc ước của 4
Tự liệt kê và tìm nhek
c) Theo phần b tự thay số và và tìm nhek
💐💐💐💐 💐💐💐💐
💐Chúc💐 💐Mừng💐
💐Tết 💐 💐Xuân 💐
🌺Đến 🌺 🌺Sang 🌺
🌹Trăm🌹 🌹Vạn 🌹
🌺Điều 🌺 🌺Sự 🌺
💐Như 💐 💐Thành💐
💐Ý 💐 💐Công 💐
💐💐💐💐 💐💐💐💐
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
\(A=\frac{5}{3n+2}\)
để A \(\in\)Z thì \(\frac{5}{3n+2}\)\(\in\)Z \(\Rightarrow\)5 \(⋮\)3n + 2 \(\Rightarrow\)3n + 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
Lập bảng ta có :
vì n \(\ge\)0 nên n = 1
Vậy ...
Chi tiết cho mk nha