K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

a/ Bạn tự giải

b/ Phương trình hoành độ giao điểm:

\(x^2-2mx-m^2-2=0\)

\(ac=1.\left(-m^2-2\right)< 0\) nên pt luôn có 2 nghiệm với mọi m

Do \(x_1\) là nghiệm của pt

\(\Rightarrow x_1^2-2mx_1-m^2-2=0\Rightarrow2x_1^2=4mx_1+2m^2+4\)

Thay vào bài toán:

\(4m\left(x_1+x_2\right)-4m^2-1< 0\)

\(\Leftrightarrow8m^2-4m^2-1< 0\)

\(\Leftrightarrow4m^2< 1\Rightarrow m^2< \frac{1}{4}\Rightarrow-\frac{1}{2}< m< \frac{1}{2}\)

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm ta có  :

\(2x^2=2mx+1\Leftrightarrow2x^2-2mx-1=0\text{ }\left(\text{*}\right)\)

Dễ thấy có ac = 2.(-1 ) = -2 < 0 nên (*) luôn có hai nghiệm phân biệt

mà rõ ràng x1 x2 trái dấu nên ta biết rằng : \(\left|x_2\right|-\left|x_1\right|=x_2+x_1=2m=2021\Leftrightarrow m=\frac{2021}{2}\)( do x2 dương, x1 âm)

6 tháng 5 2018

ko biết

Nhìn đã hoa mắt

KB nhé

em lớp 2 nên ko hiểu 

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm: \(x^2=2x-3m\Leftrightarrow x^2-2x+3m=0\) (1)

(P) cắt (d) tại 2 điểm khi (1) có 2 nghiệm \(\Rightarrow\Delta'=1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3m\end{matrix}\right.\)

\(x_1.x_2^2-x_2\left(3m+2x_1\right)=12\)

\(\Leftrightarrow x_1x_2.x_2-3mx_2-2x_1x_2=12\)

\(\Leftrightarrow3mx_2-3mx_2-6m=12\)

\(\Rightarrow m=-2\)

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)