Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: y'= x2 - 3x - m -1 + (2x - 3)( x - m) = 3x2 - (2m + 6)x + 2m-1
y'=0 ↔ 3x2 - (2m + 6)x + 2m-1 = 0 (1)
Để hàm số y= (x - m)( x2 - 3x - m - 1) có cực đại và cực tiểu thì phương trình y'=0 có 2 nghiệm phân biệt ↔ phương trình (1) có 2 nghiệm phân biệt ↔ Δ' > 0 ↔ (m+3)2 - 3(2m-1) >0 ↔ m2 + 12 > 0 ( mọi m)
→ Hầm số luôn có cả cực đại và cực tiểu.
Gọi x1 và x2 là 2 nghiệm của phương trình (1)
Khi đó, theo định lý Vi-ét, nghiệm của phương trình (1) là: x1 + x2 = ( 2m+6)/3 ; x1x2= (2m -1)/3
Theo bài ra, ta có: | xCĐ - xCT| \(\ge\frac{\sqrt{52}}{3}\)
↔| x1 - x2| \(\ge\frac{\sqrt{52}}{3}\) ↔ 9| x1 - x2|2 \(\ge\) 52 ↔ 9( x1 + x2)2 - 36x1x2 \(\ge\) 52
↔ m2 \(\ge\) 1
→ \(m\ge1\) hoặc \(m\le-1\)
Hàm số xác định trên R
Ta có \(y'=3x^2-2\left(m+3\right)x+2m-1\)
\(\Rightarrow y'=0\Leftrightarrow3x^2-2\left(m+3\right)x+2m-1=0\left(1\right)\)
Hàm số có 2 điểm cực trị thỏa mãn \(\left|x_{CD}-x_{CT}\right|\ge\frac{\sqrt{52}}{3}\Leftrightarrow\) phương trình (1) có 2 nghiệm \(x_1;x_2\) thỏa mãn \(\left|x_1-x_2\right|\ge\frac{\sqrt{52}}{3}\) \(\Leftrightarrow\begin{cases}\Delta'=m^2+7>0\\\left(x_1+x_2\right)^2-4x_1x_2\ge\frac{52}{9}\end{cases}\)
Theo định lý Viet ta có : \(\begin{cases}x_1+x_2=\frac{2\left(m+3\right)}{3}\\x_1x_2=\frac{2m-1}{3}\end{cases}\)
Suy ra \(\left(\frac{2\left(m+3\right)}{3}\right)^2-4\frac{2m-1}{3}\ge\frac{52}{9}\)
\(\Leftrightarrow4m^2-4\ge0\Leftrightarrow m\in\)(-\(\infty;-1\)] \(\cup\) [\(1;+\infty\))
Vậy m\(\in\)(-\(\infty;-1\)] \(\cup\) [\(1;+\infty\))
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)
\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)
Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :
\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)
Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$
b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt
$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt
$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$
Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$
Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$
c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$
$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$
$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$
$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$
Viết lại đoạn cuối:
$\Rightarrow\left{\begin{matrix}x_0^2=1\\x_0^3+x_0^2+y_0-2=0\end{matrix}\right.$ $\Rightarrow \begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$
\(y'=2x^2-6\left(m+1\right)x+9\)
Để hàm số có cực đại, cực tiểu
\(\Delta'=9\left(m+1\right)^2=3.9>0\)
\(=\left(m+1\right)^2-3>0\)
\(\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)
Ta có : \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)
Gọi tọa độ điểm cực đại và cực tiểu là \(\left(x_1;y_1\right)\) và \(\left(x_2;y_2\right)\)
=> \(y_1=-2\left(m^2+2m-2\right)x_1+4m+1\)
\(y_2=-2\left(m^2+2m-2\right)x_2+4m+1\)
Vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là
\(y=-2\left(m^2+2m-2\right)x+4m+1\)
Vì 2 điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng \(y=\frac{1}{2}x\) ta có điều kiện cần là :
\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\)
\(\Leftrightarrow m^2+2m-2=1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)
Theo định lí Viet ta có \(\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=3\end{cases}\)
Khi m =1 => phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là
\(y=-2x+5\)
Tọa độ trung điểm cực đại và cực tiểu là :
\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)
Tọa độ trung điểm cực đại và cực tiểu là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\Rightarrow m=1\) thỏa mãn
Khi m=-3 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x-11
(làm tương tự cách như trên)
Ta có : \(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left(2x^2+6mx+3\left(m+1\right)\right)\)
\(\Rightarrow y'=0\Leftrightarrow x=0\) hoặc
\(\Leftrightarrow f\left(x\right)=2x^2+6mx+3m+3=0\)
a) Hàm số có 3 cực trị khi và chỉ khi \(f\left(x\right)\) có 2 nghiệm phân biệt khác 0
\(\Leftrightarrow\begin{cases}\Delta'=3\left(3m^2-2m-2\right)>0\\f\left(0\right)\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< \frac{1-\sqrt{7}}{3}\cup m>\frac{1+\sqrt{7}}{3}\\m\ne-1\end{cases}\)
b) Hàm số chỉ có cực tiểu mà không có cực đại
\(\Leftrightarrow\) hàm số không có 3 cực trị \(\Leftrightarrow\frac{1-\sqrt{7}}{3}\le m\le\frac{1+\sqrt{7}}{3}\)
\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)
\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)
Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)
- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)
\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)
- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)
\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)
- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị
- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\)
hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép
\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)
\(y'=3x^2+2x+m+1\)
Để hàm số có 2 cực trị \(\Leftrightarrow\Delta'=1-3\left(m+1\right)>0\Leftrightarrow m< -\frac{2}{3}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_{CĐ}+x_{CT}=-\frac{2}{3}\\x_{CĐ}.x_{CT}=\frac{m+1}{3}\end{matrix}\right.\)
a/ Để biểu thức bài toán xác định \(\Rightarrow m\ne-1\)
\(\frac{x_{CĐ}+x_{CT}}{x_{CĐ}.x_{CT}}=3\Leftrightarrow\frac{-\frac{2}{3}}{\frac{m+1}{3}}=3\Leftrightarrow m+1=-\frac{2}{3}\Rightarrow m=-\frac{5}{3}\)
b/ Để hai cực trị cùng âm \(\Leftrightarrow\left\{{}\begin{matrix}x_{CĐ}+x_{CT}=-\frac{2}{3}< 0\\x_{CĐ}.x_{CT}=m+1>0\end{matrix}\right.\)
\(\Leftrightarrow-1< m< -\frac{2}{3}\)
c/ Do \(x_{CĐ}+x_{CT}=-\frac{2}{3}< 0\) nên ko tồn tại m để hàm số có 2 cực trị cùng dương