Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a = 2x+y+z ; b = 2y+z+x ; c = 2z+x+y => a+b+c = 4x+4y+4z
=> a - (a+b+c)/4 = x => x = (3a-b-c)/4 ; tương tự y = (3b-c-a)/4 ; z = (3c-a-b)/4
thay vào vế trái ta có
P = (3a-b-c)/4a + (3b-c-a)/4b + (3c-a-b)/4c =
= 9/4 - (b/4a + c/4a + c/4b + a/4b + a/4c + b/4c)
= 9/4 - (1/4)(b/a+a/b + c/a+a/c + c/b+b/c)
Côsi cho từng cặp ta có: b/a+a/b ≥ 2 ; c/a+a/c ≥ 2 ; c/b+b/c ≥ 2
=> b/a+a/b + c/a+a/c + c/b+b/c ≥ 6
=> -(1/4)(b/a+a/b +c/a+a/c + c/b+b/c) ≤ -6/4 thay vào P ta có:
P ≤ 9/4 - 6/4 = 3/4 (đpcm) ; dấu "=" khi a = b = c hay x = y = z
cách này tuy biến đổi dài nhưng dễ hiểu)
------------
Cách khác:
P = x/(2x+y+z) -1 + y/(2y+z+x) -1 + z/(2z+x+y) - 1 + 3
= -(x+y+z)/(2x+y+z) -(x+y+z)/(2y+z+x) -(x+y+z)/(2z+x+y) + 3
= -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] + 3
- - -
Côsi cho 3 số:
2x+y+z + 2y+z+x + 2z+x+y ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y)
=> 4(x+y+z) ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) (1*)
Côsi cho 3 số:
1/(2x+y+z)+1/(2y+z+x)+1/(2z+x+y) ≥ 3³√1/(2x+y+z)(2y+z+x)(2z+x+y) (2*)
Lấy (1*) *(2*) ta có:
4(x+y+z)[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≥ 9
=> -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≤ -9/4
thay vào P ta có:
P ≤ -9/4 + 3 = 3/4 (đpcm) ; dấu "=" khi x = y = z
xong rồi làm mệt chết đi được
Ta có : x/z = z/y ( y,z khác 0 )
⇒ z^2 = xy
⇒ x^2+z^2/y^2+z^2 = x^2+xy/y^2+xy
= x(x + y) / y(y + x)
= x/y
Vậy x^2+z^2/y^2+z^2 = x/y
( đpcm )
Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)
Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)
\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)
=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)
\(\frac{x}{z}=\frac{z}{y}\)
cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)
áp dụng t/c dãy tỉ số = nhau
\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)
vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)
từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
= x/y mới đúng chứ nhỉ ? Có sai đề không thế ?
Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
\(\Rightarrow x=zk;z=yk\)
Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+\left(yk\right)^2}{y^2+\left(yk\right)^2}=\frac{z^2.k^2+y^2.k^2}{y^2+y^2.k^2}=\frac{k^2\left(z^2+y^2\right)}{y^2\left(k^2+1\right)}=\)
\(=\frac{k^2\left[\left(yk\right)^2+y^2\right]}{y^2\left(k^2+1\right)}=\frac{k^2\left(y^2.k^2+y^2\right)}{y^2\left(k^2+1\right)}=\frac{k^2.y^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=k^2\left(1\right)\)
Lại có : \(\frac{x}{z}=k\left(2\right)\)
Từ (1) và (2) => \(\frac{x^2+y^2}{y^2+z^2}=\left(\frac{x}{z}\right)^2\)