K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Ta có:  (đk: x,y,z,t > 0)

 \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Vậy \(M>1^{\left(đpcm\right)}\)

6 tháng 8 2020

Ta có 

\(\frac{x+y}{x+y+z}>\frac{x+y}{x+y+z+t};\frac{y+z}{y+z+t}>\frac{y+z}{x+y+z+t};\frac{z+t}{z+t+x}>\frac{z+t}{x+y+z+t};\frac{t+x}{t+x+y}>\frac{t+x}{x+y+z+t}\)

\(\Rightarrow LHS>2\) ( điều phải chứng minh )

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU

11 tháng 3 2017

Ta có : 

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

Do đó M ko nhận giá trị nguyên

11 tháng 3 2017

mình biết làm nhưng ghi phân  số mỏi tay quá

15 tháng 1 2016

Vi \(x+y+z>x+y+z+y\)

\(\Rightarrow\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

Vi \(x+z+y+t>z+y+t\Rightarrow\frac{y}{z+y+t}>\frac{y}{x+y+z+t}\)

Vi \(x+z+y+t>z+y+t\Rightarrow\frac{z}{z+y+t}>\frac{z}{x+y+z+t}\)

Vi \(x+z+y+t>z+x+t\Rightarrow\frac{t}{z+x+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)

\(>\frac{x+y+z+t}{x+y+z+t}=1\)

Vi \(x+z+y>z+y\Rightarrow\frac{x}{z+y}>\frac{x}{x+y+z}\)

Vi  \(t+z+y>z+y\Rightarrow\frac{y}{z+y}>\frac{y}{t+y+z}\)

Vi \(t+z+y>z+t\Rightarrow\frac{z}{z+t}>\frac{z}{t+y+z}\)

Vi \(t+z+x>z+y\Rightarrow\frac{t}{z+t}>\frac{t}{t+x+z}\)

\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)

\(<\frac{x+y}{x+y}+\frac{z+t}{z+t}=2\)

\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<2\)

\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\notin N\)

Tick cho minh nha minh la nguoi giai nhanh nhat nhe

11 tháng 12 2016

Bạn ghi sai đề nhé chữa thành :

M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)

Giải

Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

=> M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)>\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

=> M>1 (1)

Ta lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{x}{y+z+t}< \frac{x+y}{x+y+z+t}\)

\(\frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

=> M=\(\frac{x}{x+y+z}=\frac{y}{y+z+t}=\frac{z}{z+t+x}=\frac{t}{t+x+y}\)<

\(\frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}=\frac{t+z}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)=> M<2 (2)

Từ (1) và (2) => 1<M<2

=> M không phải là số tự nhiên

 

 

24 tháng 6 2020

Vì x, y, z, t thuộc N* nên :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)

Từ (1) (2) (3) và (4)

\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\) không phải là số tự nhiên

24 tháng 6 2020

Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm

8 tháng 7 2019

Chứng minh cái gì ???

8 tháng 7 2019

M không là số tự nhiên