Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế với vế của 3 đẳng thức đã cho ta được:
\(x+y+z-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2012-2\sqrt{y+2012}+1\right)+\left(z-2013+2\sqrt{z-2013}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2}-1\right)^2=0\\\left(\sqrt{y+2012}-1\right)^2=0\\\left(\sqrt{z-2013}-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y+2012}-1=0\\\sqrt{z-2013}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2011\\z=2014\end{matrix}\right.\)
Thay vào C ta được:
C = (3 - 4)2016 + (-2011 + 2012)2017 + (2014 - 2013)2018
C = 1 + 1 + 1 = 3
THÊM
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
\(\Leftrightarrow\sqrt{4x^2+4xy+8y^2}+\sqrt{4y^2+4yz+8z^2}+\sqrt{4z^2+4zx+8x^2}\ge4\left(x+y+z\right)\)
Ta có:
\(VT=\sqrt{\left(2x+y\right)^2+\left(\sqrt{7}y\right)^2}+\sqrt{\left(2y+z\right)^2+\left(\sqrt{7}z\right)^2}+\sqrt{\left(2z+x\right)^2+\left(\sqrt{7}x\right)^2}\)
\(VT\ge\sqrt{\left(2x+y+2y+z+2z+x\right)^2+\left(\sqrt{7}x+\sqrt{7}y+\sqrt{7}z\right)^2}\)
\(VT\ge\sqrt{16\left(x+y+z\right)^2}=4\left(x+y+z\right)\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\)
BĐT Mincopxki:
\(\sqrt{x^2+a^2}+\sqrt{y^2+b^2}+\sqrt{z^2+c^2}\ge\sqrt{\left(x+y+z\right)^2+\left(a+b+c\right)^2}\)
5(x+y)2+3(x-y)2=8x2+4xy+8y2=4(2x2+xy+2z2)>=5(x+y)2
=> \(\sqrt{2x^2+xy+2y^2}\ge\sqrt{\frac{5\left(x+y\right)^2}{4}}\)= \(\frac{\sqrt{5}\left(x+y\right)}{2}\)
Tương tự. Cộng lại là ra nha. Dấu = xảy ra <=> x=y=z=1/3