Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\Rightarrow a+b+c=18\)
Có: BDT
\(\Leftrightarrow\sum_{cyc}\left(\frac{b+c+5}{a+1}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{a+b+c-a+5}{a+1}\right)\ge\frac{51}{7}\)(1)
Đặt tiếp tục: \(\left\{{}\begin{matrix}m=a+1\\n=b+1\\p=c+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sum_{cyc}\left(\frac{24-m}{m}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{24}{m}-1\right)\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge21\cdot\frac{3}{7}=9\)
\(\left(\frac{m}{n}-2+\frac{n}{m}\right)+\left(\frac{p}{m}-2+\frac{m}{p}\right)+\left(\frac{n}{p}-2+\frac{p}{n}\right)\ge0\)
\(\Leftrightarrow\frac{\left(m-n\right)^2}{mn}+\frac{\left(p-m\right)^2}{pm}+\frac{\left(n-p\right)^2}{pn}\ge0\)(đúng)
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\)
BĐT
\(\Leftrightarrow\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{a+b+c-a+5}{a+1}+\frac{a+c+b-b+5}{b+1}+\frac{a+b+c-c+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{24-\left(a+1\right)}{a+1}+\frac{24-\left(b+1\right)}{b+1}+\frac{24-\left(c+1\right)}{c+1}\ge\frac{51}{7}\)(1)
Đặt tiếp: \(\left\{{}\begin{matrix}a+1=m\\b+1=n\\c+1=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
(1)\(\Leftrightarrow\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{3}{7}\left(m+n+p\right)\)( do m+n+p>0)
\(\Leftrightarrow3+\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{m}{p}+\frac{p}{m}\ge\frac{3}{7}\left[\left(a+b+c\right)+3\right]\)
\(\Leftrightarrow\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{p}{m}+\frac{m}{p}-6\ge0\)
Tới đây chắc bn làm đc rồi
\(\frac{2y+3z+5}{1+x}+1+\frac{3z+x+5}{1+2y}+1+\frac{x+2y+5}{1+3z}+1\ge\frac{51}{7}+3=\frac{72}{7}\left(1\right)\)
Vậy ta cần chứng minh Bđt (1) , ta có:
\(VT_{\left(1\right)}=\frac{2y+3z+6+x}{1+x}+\frac{3z+x+2y+6}{1+2y}+\frac{x+2y+3z+6}{1+3z}\)
\(=\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{1+3z}\right)\)
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{3z}\right)\)
\(\ge\left(3z+x+2y+6\right)\left(\frac{9}{3+x+2y+3z}\right)\)
\(=\left(18+6\right)\cdot\frac{9}{18+3}=24\cdot\frac{3}{7}=\frac{72}{7}\)
Vậy Bđt (1) đúng =>Đpcm
Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\)
\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Áp dụng Bđt Cô si ngược dấu ta có:
\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)
Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)
\(VT+3=\left(x+2y+3z+6\right)\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
= \(24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\ge\dfrac{9}{3+x+2y+3z}=\dfrac{9}{21}\)
\(\Rightarrow VT\ge\dfrac{24.9}{21}-3=\dfrac{51}{7}\)
dấu = xảy ra khi x=2y=3z=6 hay x=6,y=3,z=2
Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)
\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)
Áp dụng nhiều lần bđt trên ta được
\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)
\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)
\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)
\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)
C/m tương tự cho các bđt còn lại
\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)
\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)
Cộng vế theo vế được
\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)
Dấu "=" xảy ra
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)
\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)
Vậy ..........
cách khác :))
\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)
\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)
\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)
\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)
\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)
Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)
\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)
\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)
\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)
\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)
\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)
Đẳng thức xảy ra khi x = y = 1; z = 2
Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18
\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)
Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\)
Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)
\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)
\(=\frac{24.9}{18+3}-3=\frac{51}{7}\)