Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-x^3\left(y-z\right)-y^3\left(z-x\right)-z^3\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{-x^3y+x^3z-y^3z+y^3x-z^3x+z^3y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=x+y+z=2008\)
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))
3) áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=>\(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=>\(3xyz=xy+yz+zx\)
mặt khác ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx=1\)
<=>\(1+2xy+2yz+2zx=1\)
<=> \(xy+yz+zx=0\)
do đó 3xyz=0<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
lần lượt thay x;y;z vào hệ ta có các cặp nghiệm (x;y;z)=(0;0;1),(0;1;0),(1;0;0)
do đó x^2017+y^2017+z^2017=1
Kiểm tra lại đề nhé
đề chính xác nó thế.Không bít nó có bị sao không