Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bé hơn hoặc bằng 11 nha bn
bn làm ko đc thì đừng ns
thầy mik làm đc ra rồi
nhưng bắt mik làm lại thôi bn à
Theo giả thiết: \(xyz=x+y+z+2\)
\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\)\(=\left(xy+yz+zx\right)+2\left(x+y+z\right)+3\)
\(\Leftrightarrow\left(xy+x+y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\). Đặt \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)
Khi đó a + b + c = 1 và \(x=\frac{1-a}{a}=\frac{b+c}{a}\);\(y=\frac{1-b}{b}=\frac{c+a}{b}\);\(z=\frac{1-c}{c}=\frac{a+b}{c}\)
Ta cần chứng minh \(x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2-\left(x+y+z\right)\)
\(\Leftrightarrow\sqrt{2\left(x+y+z+3\right)}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow\sqrt{2\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow\sqrt{\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)\(\ge\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\)
BĐT cuối hiển nhiên đúng vì đây là BĐT Bunyakovski do đó bài toán được chứng minh.
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)hay x = y = z = 2
ta caàn chứng minh bđt
\(\frac{x}{x+yz}+\frac{y}{y+zx}\ge\frac{x}{x+xz}+\frac{y}{y+yz}=\frac{1}{1+z}+\frac{1}{1+z}=\frac{2}{1+z}\)
tương tự + vào, dùng svác sơ
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)
\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)
Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)
\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)
\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)
\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)
Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)
Dấu "=" <=> x=y=z=1
\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)
Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\). Vậy ta cần chứng minh
\(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)
\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)
\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)
Đặt \(a=\frac{z}{x+y}\ge1\), ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)
Dễ thấy BĐT này đúng. Vậy ta có đpcm
1) BĐT chứng minh ⇔∑(x2y2+y2x2)≥212⇔∑(x2y2+y2x2)≥212
Ta có x2y2+y2x2≥2x2y2+y2x2≥2
Ta sẽ đi chứng minh y2z2+z2y2+z2x2+x2z2≥172y2z2+z2y2+z2x2+x2z2≥172
Ta có y2z2+x2z2≥12(xz+yz)2y2z2+x2z2≥12(xz+yz)2
z2y2+z2x2≥12(4zx+y)2z2y2+z2x2≥12(4zx+y)2
Đặt a=zx+y≥1a=zx+y≥1
Ta sẽ chứng minh 12a2+8a2≥17212a2+8a2≥172
Dễ thấy bđt này đúng suy ra đpcm