K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Cod : (a-b)^2 >= 0 

<=> a^2+b^2 >= 2ab

<+> a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b > 0 thì chia cả 2 vế trên cho ab.(a+b) ta được :

a+b/ab >= 4/a+b

<=> 1/a+1/b >= 4/a+b 

<=> 1/a+b <= 1/4 . (1/a+1/b)

Xét : xy/z+1 = xy/x+y+z+z = xy/(x+z)+(y+z) = xy.[1/(x+z)+(y+z)] <= xy/4 . (1/x+z + 1/y+z) = 1/4. (xy/x+z+xy/y+z)

Tương tự : yz/x+1 <= 1/4.(yz/x+y + yz/x+z)

xz/y+1 <= 1/4.(xz/y+x + xz/y+z)

=> M <= 1/4 .[ (xy/x+z + yz/x+z) + (xy/y+z + xz/y+z) + (yz/x+y + xz/y+z ) = 1/4.(y+x+z) = 1/4 . 1 = 1/4

Dấu "=" xảy ra <=> x=y=z và x+y+z=1

<=> x=y=z=1/3

Vậy Max của M = 1/4 <=> x=y=z=1/3

25 tháng 11 2017

cảm ơn nha

17 tháng 1 2018

Ta có:

\(xy+yz+zx=4xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)

\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{2}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

17 tháng 1 2018

áp dụng cô si sháp cho 4 số ta được :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)  Luôn đúng , ( tự chứng minh )

\(\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\frac{1}{a+b+c+d}\) luôn luôn đúng

áp dụng vào  P ta được như sau

\(\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) luôn đúng :))

\(\frac{1}{x+y+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+z+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Cộng tất cả vào ta được

\(P\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)\Leftrightarrow P\le\frac{1}{4}\left(x+y+z\right)\)

Thèo đề \(xy+yz+xz=4xyz\Leftrightarrow xy+yz+xz=xyz+xyz+xyz+xyz\)

Tao cũng éo hiểu tại sao nó = nhau được

1 đề sai  , 2 tao sai thế thôi

3 tháng 1 2017

Tìm \(n\in N\) để \(3^{2n+1}+2^{4n+1}⋮25\)

NV
29 tháng 2 2020

\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2=\frac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)

Vậy:

\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(x+y\right)^2}{1+4xy}+\frac{\left(y+z\right)^2}{1+4yz}+\frac{\left(z+x\right)^2}{1+4zx}\right]\)

\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(2x+2y+2z\right)^2}{3+4\left(xy+yz+zx\right)}\right]\ge\frac{\sqrt{3}}{2}.\frac{9}{3+\frac{4}{3}\left(x+y+z\right)^2}=\frac{3\sqrt{3}}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

4 tháng 3 2020

\(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\) mà sao thế vào là \(\frac{\sqrt{3}}{2}\left(x+y\right)^2\) vậy ạ?

3 tháng 8 2017

ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại rồi cộng lại :

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  khi đó

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

4 tháng 1 2020

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\Rightarrow\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=1\end{matrix}\right.\)

\(K=\frac{\frac{1}{a}}{\sqrt{\frac{1}{bc}\left(1+\frac{1}{a^2}\right)}}+\frac{\frac{1}{b}}{\sqrt{\frac{1}{ac}\left(1+\frac{1}{b^2}\right)}}+\frac{\frac{1}{c}}{\sqrt{\frac{1}{ab}\left(1+\frac{1}{c^2}\right)}}\) \(=\frac{\frac{1}{a}}{\sqrt{\frac{a^2+1}{a^2bc}}}+\frac{\frac{1}{b}}{\sqrt{\frac{b^2+1}{ab^2c}}}+\frac{\frac{1}{c}}{\sqrt{\frac{c^2+1}{abc^2}}}\)

\(=\sqrt{\frac{bc}{a^2+1}}+\sqrt{\frac{ca}{b^2+1}}+\sqrt{\frac{ab}{c^2+1}}\) \(=\sqrt{\frac{bc}{a^2+ab+bc+ca}}+\sqrt{\frac{ca}{b^2+ab+bc+ca}}+\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{b}{b+c}\right)\) \(\Rightarrow K\le\frac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\sqrt{3}\)